Undergraduate Course: Geometry and Physics of Soft Condensed Matter (PHYS11055)
Course Outline
School | School of Physics and Astronomy |
College | College of Science and Engineering |
Credit level (Normal year taken) | SCQF Level 11 (Year 5 Undergraduate) |
Availability | Available to all students |
SCQF Credits | 10 |
ECTS Credits | 5 |
Summary | In this course, we explore how to build theories for the complex fluids introduced in the Soft Matter Physics course, often taking examples from the world of biology. Once again, generic features will be emphasised in order to build up a repertoire of theoretical tours that a widely applicable to analysing a diversity of soft materials. Topics covered may vary from year to year depending on the specialisms of the staff involved. |
Course description |
Symmetries and phases of liquid crystals Phases of copolymers
Hydrodynamic theories of complex fluids
Topological defects in liquid crystals and elastic solids Topological properties of DNA: knots and supercoiling
|
Information for Visiting Students
Pre-requisites | None |
Course Delivery Information
|
Academic year 2015/16, Available to all students (SV1)
|
Quota: None |
Course Start |
Semester 1 |
Timetable |
Timetable |
Learning and Teaching activities (Further Info) |
Total Hours:
100
(
Lecture Hours 20,
Supervised Practical/Workshop/Studio Hours 10,
Summative Assessment Hours 4,
Revision Session Hours 4,
Programme Level Learning and Teaching Hours 2,
Directed Learning and Independent Learning Hours
60 )
|
Assessment (Further Info) |
Written Exam
80 %,
Coursework
20 %,
Practical Exam
0 %
|
Additional Information (Assessment) |
80% exam 20% coursework |
Feedback |
Not entered |
Exam Information |
Exam Diet |
Paper Name |
Hours & Minutes |
|
Main Exam Diet S2 (April/May) | | 2:00 | |
Learning Outcomes
Upon successful completion of this course it is intended that a student will be able to:
1) demonstrate knowledge and understanding of the phases of elastic solids and liquid crystals;
2) write down continuum (hydrodynamic) equations for complex fluids starting from a suitable free energy;
3) be able to identify and describe topological defects in liquid crystals and elastic solids, and explain their consequences on the physics of these materials;
4) demonstrate an understanding of the rheology of complex fluids;
5) discuss the properties of DNA knots and of supercoiled DNA, and their basic con- sequences for DNA physics and enzymology;
6) demonstrate an understanding of the elastic and physical properties of membranes, including examples which are biologically relevant;
7) demonstrate a grasp of the order of magnitude of central quantities and develop confidence with ¿intuitive¿ estimates or ¿back-of-the-envelope¿ calculations based on the concepts of the course.
|
Additional Information
Graduate Attributes and Skills |
Not entered |
Keywords | Not entered |
Contacts
Course organiser | |
Course secretary | |
|
© Copyright 2015 The University of Edinburgh - 27 July 2015 11:53 am
|