Undergraduate Course: Modern Quantum Field Theory (PHYS11047)
Course Outline
School | School of Physics and Astronomy |
College | College of Science and Engineering |
Credit level (Normal year taken) | SCQF Level 11 (Year 4 Undergraduate) |
Availability | Available to all students |
SCQF Credits | 10 |
ECTS Credits | 5 |
Summary | The course introduces path integral methods in quantum field theory. This modern approach (as opposed to canonical quantisation) allows the relatively simple quantisation of gauge theories and forms an essential tool for the understanding and development of the 'standard model' of particle physics. Topics include: Path integral formalism, Feynman rules, LSZ formalism, loop diagrams and divergencies, regularisation and renormalisation, gauge theories, running coupling constant. |
Course description |
- Path Integrals for quantum mechanics and quantum field theory, Green's functions and generating functionals for free scalar fields
- Interacting scalar fields, Feynman rules/diagrams, connected and one-particle-irreducible Green's functions
- Path integrals for fermions, Grassmann variables, Yukawa interactions
- Spectral functions, in/out states, reduction formulae (LSZ formalism), S-matrix
- One loop Feynman diagrams for scalar theories, divergencies, dimensional regularisation, renormalisation, renormalisation group, beta- and gamma- functions, Landau poles, infra red and ultra-violet fixed points
- Path integrals for gauge theories, gauge fixing, Faddeev-Popov factors, Feynman rules, renormalisation, renormalisation group, beta-function and asymptotic freedom (running coupling constant)
|
Information for Visiting Students
Pre-requisites | None |
Course Delivery Information
|
Academic year 2015/16, Available to all students (SV1)
|
Quota: None |
Course Start |
Semester 2 |
Timetable |
Timetable |
Learning and Teaching activities (Further Info) |
Total Hours:
100
(
Lecture Hours 22,
Seminar/Tutorial Hours 22,
Summative Assessment Hours 2,
Revision Session Hours 2,
Programme Level Learning and Teaching Hours 2,
Directed Learning and Independent Learning Hours
50 )
|
Assessment (Further Info) |
Written Exam
80 %,
Coursework
20 %,
Practical Exam
0 %
|
Additional Information (Assessment) |
80% Degree Examination
20% Coursework |
Feedback |
Not entered |
Exam Information |
Exam Diet |
Paper Name |
Hours & Minutes |
|
Main Exam Diet S2 (April/May) | Modern Quantum Field Theory | 2:00 | |
Learning Outcomes
Upon successful completion of this course it is intended that a student will be able to:
1) understand the notion of a path integral in quantum mechanics and field theory;
2) be familar with Grassmann numbers and their use for fermions in path integrals;
3) understand the connection between the path integral formalism and the operator (scattering) formalism;
4) understand perturbation theory and appreciate Feynmann rules and diagrams from the path integral viewpoint;
5) be familar with the problem of divergencies in quantum field theories and the renormalisation method;
6) appreciate the beauty of asymptotic freedom of the running coupling constant in non-abelian gauge theories leading to a theory of strong interactions - QCD;
7) to be able to apply what has been learnt in the course to solving simple problems in quantum field theory.
|
Contacts
Course organiser | Dr Einan Gardi
Tel: (0131 6)50 6469
Email: |
Course secretary | Yuhua Lei
Tel: (0131 6) 517067
Email: |
|
© Copyright 2015 The University of Edinburgh - 27 July 2015 11:53 am
|