Undergraduate Course: Nuclear Physics (PHYS11041)
Course Outline
School | School of Physics and Astronomy |
College | College of Science and Engineering |
Credit level (Normal year taken) | SCQF Level 11 (Year 4 Undergraduate) |
Availability | Available to all students |
SCQF Credits | 10 |
ECTS Credits | 5 |
Summary | The course will build on the Subatomic Physics course by further exploring the fundamentals of nuclear matter as well as considering some of the most important applications of nuclear physics. Topics to be studied will include decay modes, nuclear reactions, and nuclear astrophysics. The lecture course will be integrated with problem solving classes. |
Course description |
Alpha decay:
Energetics. Tunneling effect and probability. Geiger-Nuttall plot. Transition rates and selection rules.
Beta decay:
Electron and positron spectra. (Neutrino mass). Kurie plot. Fermi theory of beta decay. Fermi and Gamow-Teller interactions. Transition rates and selection rules. Electron capture. Neutrinos. Parity violation in beta decay.
Gamma decay:
Energetics. Weisskopf units. Transition rates and selection rules. Angular distribution measurements. Internal conversion.
Nuclear reactions:
Nomenclature and general features. Conservation laws. Reference frames and transformation laws. Cross section. Energy spectra. Angular distributions. Elastic scattering. Direct reactions. Compound nucleus reactions. (Heavy-ion reactions).
Nuclear physics applications:
Sources of radiation and their interaction with matter: charged particles, gamma rays, neutrons. Bethe-Bloch formula. Bragg curve. Particle range. Photo-electric effect, Compton scattering, pair production. Neutron scattering and moderation. Radiation detection and measurement. Examples of practical applications.
|
Information for Visiting Students
Pre-requisites | None |
Course Delivery Information
|
Academic year 2015/16, Available to all students (SV1)
|
Quota: None |
Course Start |
Semester 2 |
Timetable |
Timetable |
Learning and Teaching activities (Further Info) |
Total Hours:
100
(
Lecture Hours 22,
Supervised Practical/Workshop/Studio Hours 22,
Formative Assessment Hours 10,
Summative Assessment Hours 2,
Revision Session Hours 2,
Programme Level Learning and Teaching Hours 2,
Directed Learning and Independent Learning Hours
40 )
|
Assessment (Further Info) |
Written Exam
100 %,
Coursework
0 %,
Practical Exam
0 %
|
Additional Information (Assessment) |
Degree Examination, 100% |
Feedback |
Not entered |
Exam Information |
Exam Diet |
Paper Name |
Hours & Minutes |
|
Main Exam Diet S2 (April/May) | Nuclear Physics | 2:00 | |
Learning Outcomes
Upon completion of this course, the student should be able to:
1)identify basic nuclear properties and outline their theoretical descriptions
2)understand the differences between various decay modes, state selection rules, and determine wether a given decay can take place
3)calculate Q-values for alpha and beta decays and for nuclear reactions
4)apply conservation laws to nuclear reactions and transform quantities between laboratory and centre-of-mass frames
5)compare and constrast different reaction mechanisms in relation to cross-sections, excitation functions, and angular distributions
6)summarise and account for the main aspects of at least one application of nuclear physics (e.g. Nuclear Astrophysics)
7)manage to solve problems similar to those discussed in the afternoon sessions
8)develop critical thinking and independent learning, work effectively within a team
9)produce clear and informative written and oral presentations
10)develop judgement capabilities through assessment of their own work and that of others
|
Reading List
Course material will be made available in Learn |
Contacts
Course organiser | Dr Marialuisa Aliotta
Tel: (0131 6)50 5288
Email: |
Course secretary | Miss Paula Wilkie
Tel: (0131) 668 8403
Email: |
|
© Copyright 2015 The University of Edinburgh - 27 July 2015 11:53 am
|