Undergraduate Course: Foundations of Electromagnetism (PHYS09050)
Course Outline
School | School of Physics and Astronomy |
College | College of Science and Engineering |
Credit level (Normal year taken) | SCQF Level 9 (Year 3 Undergraduate) |
Availability | Available to all students |
SCQF Credits | 10 |
ECTS Credits | 5 |
Summary | This is a one-semester course, covering time-independent and time-dependent properties of electric and magnetic fields leading to the vector calculus formulation of Maxwell's Equations and the derivation of electro-magnetic waves in vacuo and in media.
|
Course description |
- Integral and differential forms of Gauss's Law. Examples of 1D, 2D, 3D charge distributions.
- Potential. Poisson's Equation. Calculation of electric fields.
- Uniqueness theorem. Solution of electrostatic problems. Method of images.
- Dipole field. Quadrupole field. Multipole expansion.
- Electrostatic boundaries. Polarisation in dielectrics. Surface charges.
- Biot-Savart Law. Magnetic vector potential. Calculation of magnetic fields.
- Integral and differential forms of Ampere's Law. Examples of 1D, 2D current distributions.
- Magnetostatic boundaries. Magnetisation. Surface currents.
- Time-varying fields. Faraday's Law. Induction.
- Calculation of self and mutual inductance.
- Displacement current. Maxwell's equations and their solution in vacuo.
- Introduction to Electromagnetic waves.
- Solution of Maxwell's equations in dielectrics.
- Continuity theorem. Conservation laws
- Poynting vector. Energy storage & transport by waves.
|
Information for Visiting Students
Pre-requisites | None |
Course Delivery Information
|
Academic year 2015/16, Available to all students (SV1)
|
Quota: None |
Course Start |
Semester 1 |
Timetable |
Timetable |
Learning and Teaching activities (Further Info) |
Total Hours:
100
(
Lecture Hours 22,
Seminar/Tutorial Hours 22,
Summative Assessment Hours 2,
Revision Session Hours 1,
Programme Level Learning and Teaching Hours 2,
Directed Learning and Independent Learning Hours
51 )
|
Assessment (Further Info) |
Written Exam
80 %,
Coursework
20 %,
Practical Exam
0 %
|
Additional Information (Assessment) |
Coursework 20%, examination 80%. |
Feedback |
Not entered |
Exam Information |
Exam Diet |
Paper Name |
Hours & Minutes |
|
Main Exam Diet S1 (December) | Foundations of Electromagnetism | 2:00 | |
|
Academic year 2015/16, Part-year visiting students only (VV1)
|
Quota: None |
Course Start |
Semester 1 |
Timetable |
Timetable |
Learning and Teaching activities (Further Info) |
Total Hours:
100
(
Lecture Hours 22,
Seminar/Tutorial Hours 22,
Summative Assessment Hours 2,
Revision Session Hours 1,
Programme Level Learning and Teaching Hours 2,
Directed Learning and Independent Learning Hours
51 )
|
Assessment (Further Info) |
Written Exam
80 %,
Coursework
20 %,
Practical Exam
0 %
|
Additional Information (Assessment) |
Coursework 20%, examination 80%. |
Feedback |
Not entered |
Exam Information |
Exam Diet |
Paper Name |
Hours & Minutes |
|
Main Exam Diet S1 (December) | | 2:00 | |
Learning Outcomes
Upon successful completion of this course it is intended that a student will be able to:
1)State the integral laws of electromagnetism and state and derive Maxwell's equations for charges and currents in a vacuum
2)Define and explain charge and current densities (in bulk and on surfaces and lines), and conductivity
3)Define, and use the concepts of electric and magnetic dipoles; calculate the fields from dipoles and forces and torques on them
4)Define and explain: polarisation and magnetisation; the fields D, H, E and B; the relation between E, B and the force on a particle; polarisation charges and magnetisation currents; boundary conditions on fields at interfaces between media; Maxwell's equations in media
5)Define and explain in atomic terms: the response of linear media; relative permittivity and permeability; their relation to the electromagnetic energy density; nonlinear media such as ferromagnets
6)Formulate and solve boundary-value problems using: superposition methods; uniqueness principles; the method of images; qualitative reasoning based on field lines; the equations of Biot-Savart, Faraday, Ampere, Gauss, Laplace and Poisson
7)Formulate and solve with vector calculus problems of static and time-varying electrical and magnetic fields
8)Derive and apply the concepts of: Maxwell's displacement current; the continuity equation; self- and mutual inductance; Poynting's vector; energy flux; radiation pressure
9)Derive and explain electromagnetic radiation using plane-wave solutions of Maxwell's equations; apply these to problems of intrinsic impedance, attenuation, dispersion, reflection, transmission, evanescence, and the skin effect in conductors; derive and explain total internal reflection, polarisation by reflection.
10)Explain and utilise the properties of the electric scalar potential and the magnetic vector potential.
|
Additional Information
Graduate Attributes and Skills |
Not entered |
Keywords | FEMag |
Contacts
Course organiser | Prof Martin Evans
Tel: (0131 6)50 5294
Email: |
Course secretary | Yuhua Lei
Tel: (0131 6) 517067
Email: |
|
© Copyright 2015 The University of Edinburgh - 27 July 2015 11:52 am
|