Undergraduate Course: Topics in Ring and Representation Theory (MATH11144)
Course Outline
School | School of Mathematics |
College | College of Science and Engineering |
Credit level (Normal year taken) | SCQF Level 11 (Year 5 Undergraduate) |
Availability | Available to all students |
SCQF Credits | 10 |
ECTS Credits | 5 |
Summary | Many modern mathematical avenues of research build on the foundations of linear algebra and group theory studied at Levels 8, 9, and 10 to tackle fundamental questions involving symmetry, invariance, structure, and classification, both within mathematics and throughout the natural sciences. This course develops these important algebraic concepts at an advanced level. Topics are drawn from the areas of ring theory, representation theory and category theory. |
Course description |
The syllabus will vary from year to year. Possible topics include:
- Representations of finite groups
- Homological algebra
- Deformation theory of algebras
- Lie algebras
|
Entry Requirements (not applicable to Visiting Students)
Pre-requisites |
Students MUST have passed:
Honours Algebra (MATH10069) It is RECOMMENDED that students have passed
Commutative Algebra (MATH10017)
|
Co-requisites | |
Prohibited Combinations | |
Other requirements | Students should have taken MATH10079 Group Theory or MATH10078 Group and Galois Theory.
This course is designed so as to be independent of MATH11143 Topics in Noncommutative Algebra, so that students may take either course, or both. |
Information for Visiting Students
Pre-requisites | None |
Course Delivery Information
|
Academic year 2015/16, Available to all students (SV1)
|
Quota: None |
Course Start |
Semester 1 |
Timetable |
Timetable |
Learning and Teaching activities (Further Info) |
Total Hours:
100
(
Lecture Hours 22,
Seminar/Tutorial Hours 5,
Summative Assessment Hours 2,
Programme Level Learning and Teaching Hours 2,
Directed Learning and Independent Learning Hours
69 )
|
Assessment (Further Info) |
Written Exam
80 %,
Coursework
20 %,
Practical Exam
0 %
|
Additional Information (Assessment) |
Coursework 20%, Examination 80% |
Feedback |
Not entered |
No Exam Information |
Learning Outcomes
After successful completion of this course, students will understand an advanced topic in algebra at a level suitable for an upper-level undergraduate. Specifically, students will be able to:
1. State important theorems in the topic area and explain key steps in their proof.
2. Explain the underlying definitions in the topic area.
3. Provide examples illustrating these definitions.
4. Demonstrate their comprehension by solving unseen problems in the topic area.
|
Additional Information
Graduate Attributes and Skills |
Not entered |
Keywords | TRRT |
Contacts
Course organiser | Dr Thomas Leinster
Tel: (0131 6)50 5057
Email: |
Course secretary | Mrs Alison Fairgrieve
Tel: (0131 6)50 5045
Email: |
|
© Copyright 2015 The University of Edinburgh - 27 July 2015 11:36 am
|