Undergraduate Course: Group Theory (MATH10079)
Course Outline
School | School of Mathematics |
College | College of Science and Engineering |
Credit level (Normal year taken) | SCQF Level 10 (Year 4 Undergraduate) |
Availability | Available to all students |
SCQF Credits | 10 |
ECTS Credits | 5 |
Summary | This is a course in abstract algebra, although connections with other
fields will be stressed as often as possible. It is a systematic study of the basic structure of groups, finite and infinite. There will also be some ring theory. |
Course description |
· Group actions & Sylow Theorems
· Homomorphisms, isomorphisms & factor groups
· Group Presentations
· Simple groups & Composition Series
· Polynomial rings & finite fields
· Classification of finite abelian groups
· PIDs & their modules
|
Entry Requirements (not applicable to Visiting Students)
Pre-requisites |
Students MUST have passed:
Honours Algebra (MATH10069)
|
Co-requisites | |
Prohibited Combinations | Students MUST NOT also be taking
Group and Galois Theory (MATH10078)
|
Other requirements | Students wishing to take both MATH10079 Group Theory and MATH10080 Galois Theory in the same academic session should register for the 20 credit course MATH10078 Group and Galois Theory. |
Information for Visiting Students
Pre-requisites | None |
Course Delivery Information
|
Academic year 2015/16, Available to all students (SV1)
|
Quota: None |
Course Start |
Semester 1 |
Timetable |
Timetable |
Learning and Teaching activities (Further Info) |
Total Hours:
100
(
Lecture Hours 22,
Seminar/Tutorial Hours 5,
Summative Assessment Hours 2,
Programme Level Learning and Teaching Hours 2,
Directed Learning and Independent Learning Hours
69 )
|
Assessment (Further Info) |
Written Exam
80 %,
Coursework
20 %,
Practical Exam
0 %
|
Additional Information (Assessment) |
Coursework 20%, Examination 80% |
Feedback |
Not entered |
Exam Information |
Exam Diet |
Paper Name |
Hours & Minutes |
|
Main Exam Diet S2 (April/May) | MATH10079 | 2:00 | | Main Exam Diet S1 (December) | MATH10079 Group Theory (Semester 1 Visiting Students Only) | 2:00 | |
|
Academic year 2015/16, Part-year visiting students only (VV1)
|
Quota: 1 |
Course Start |
Semester 1 |
Timetable |
Timetable |
Learning and Teaching activities (Further Info) |
Total Hours:
100
(
Lecture Hours 22,
Seminar/Tutorial Hours 5,
Summative Assessment Hours 2,
Programme Level Learning and Teaching Hours 2,
Directed Learning and Independent Learning Hours
69 )
|
Assessment (Further Info) |
Written Exam
80 %,
Coursework
20 %,
Practical Exam
0 %
|
Additional Information (Assessment) |
Coursework 20%, Examination 80% |
Feedback |
Not entered |
No Exam Information |
Learning Outcomes
1. Facility with the Sylow theorems, group homomorphisms and presentations, and the application of these in order to describe aspects of the intrinsic structure of groups, both abstractly and in specific examples.
2. Ability to manipulate composition series, through both the proof of
abstract structural properties and the calculation of explicit examples.
3. Capacity to work with the classes of rings and fields appearing in the course, particularly specific calculations around finite fields and polynomials.
4. Be able to produce examples and counterexamples illustrating the mathematical concepts presented in the course.
5. Understand the statements and proofs of important theorems and be able to explain the key steps in proofs, sometimes with variation.
|
Reading List
Recommended :
- T S Blyth and E S Robertson, Groups (QA171.Bly )
- J F Humphreys, A Course in Group Theory (QA177 Hum)
- M A Armstrong, Groups and Symmetry (QA171 Arm )
- J J Rotman, The theory of groups: An introduction (QA171 Rot )
- J J Rotman, An introduction to the Theory of Groups (QA174.2 Rot ) |
Additional Information
Graduate Attributes and Skills |
Not entered |
Keywords | GrTh |
Contacts
Course organiser | Dr Susan Sierra
Tel: (0131 6)50 5060
Email: |
Course secretary | Mrs Alison Fairgrieve
Tel: (0131 6)50 5045
Email: |
|
© Copyright 2015 The University of Edinburgh - 27 July 2015 11:35 am
|