THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2015/2016

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Chemistry : Chemistry

Undergraduate Course: Chemical Medicine Level 10 (CHEM10052)

Course Outline
SchoolSchool of Chemistry CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 10 (Year 4 Undergraduate) AvailabilityAvailable to all students
SCQF Credits20 ECTS Credits10
SummaryThis is a 20-credit Senior Honours lecture course on applications of chemistry in medicine, with emphasis on pharmaceuticals and biotechnology. The course will engender an appreciation of the importance of structure-activity relationships in modern day drug design and development, cover the design and synthesis of diverse compound libraries, compare rational design vs high throughput screening as routes to drug leads, show how a knowledge of modes and mechanisms of action allows screening and elaboration of leads, engender appreciation of how chemists contribute new molecular entities with applications in diagnostics, drug delivery, biomaterials and tissue engineering.

The Level 10 version of this course is a compulsory requirement for Senior Honours BSc students on degrees in Medicinal and Biological Chemistry, but can be taken by Senior Honours BSc students on any Chemistry degree programme.

The course comprises of individual component lecture courses and associated tutorials or workshops.
Course description The course comprises individual lecture courses on Medicinal Chemistry, Physical Organic Aspects of Medicinal Chemistry, Computational Approaches to Drug Design, Metals in Medicine, and Chemical Biology Approaches to Drug Design.

At the end of this course students will be able to:
- show an understanding of how the physicochemical properties of drugs relate to their biological properties
- appreciate how the field of chemical biology has impacted the discovery of new therapeutics in terms of enhanced understanding of protein-ligand interactions, new approaches to lead discovery and new methods for drug delivery
- understand how the use of chemoinformatics, virtual screening and docking can impact upon drug design
- describe the biomedical periodic table and the uses of metals in medicine
- describe common routes of administration of drugs and drug delivery systems
- describe common metabolic pathways and how they may be exploited in the design of drugs, prodrugs and soft drugs
- show understanding of rational approaches towards the design of important drugs and the biological implications of such therapeutic agents including the use of enzymes to inhibit protein processing as a concept for the design of new pharmaceuticals.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Students MUST have passed: Chemistry 3A (CHEM09005) AND Chemistry 3B (CHEM09006) AND Chemistry 3P Practical and Transferable Skills (CHEM09007)
Co-requisites
Prohibited Combinations Students MUST NOT also be taking Chemical Medicine Level 11 (CHEM11044)
Other requirements Must include a weighted average of Grade D or higher in Chemistry 3A and Chemistry 3B, at the first attempt; or with the permission of Head of School.
Information for Visiting Students
Pre-requisitesNone
High Demand Course? Yes
Course Delivery Information
Academic year 2015/16, Available to all students (SV1) Quota:  None
Course Start Semester 2
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 200 ( Lecture Hours 30, Seminar/Tutorial Hours 8, Summative Assessment Hours 2.5, Revision Session Hours 5, Programme Level Learning and Teaching Hours 4, Directed Learning and Independent Learning Hours 151 )
Assessment (Further Info) Written Exam 100 %, Coursework 0 %, Practical Exam 0 %
Additional Information (Assessment) One 2.5 hour exam
Feedback Feedback is provided through the tutorials and workshops associated with the individual component lecture courses. Problem material will be made available for preparation in advance of the tutorial or workshop. Although these are not marked, material should always be attempted in advance as they are a good self-check on how well the material from the lectures has been understood, and the tutorials provide the opportunity to ask questions to resolve any difficulties with a particular topic.
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S2 (April/May)2:30
Learning Outcomes
On completion of this course, the student will be able to:
  1. Show an understanding of the principal theories and concepts behind the application of chemistry to medicine, including the discovery of new therapeutic targets, the development of drugs, prodrugs and drug-like lead compounds, and common routes to drug delivery and administration.
  2. Apply this chemical knowledge to: explain the properties of, propose synthetic routes to, explain the mode of action of, and propose new targets for, a range of drugs and drug-like lead compounds.
  3. Critically review current practices in the application of chemistry to medicine and demonstrate an ability to analyse or assess complex problems based on diverse, or limited, datasets.
  4. Interpret and use a wide range of numerical, graphical and schematic (including chemical structures and curly arrows) data and communicate this effectively.
  5. Show an appreciation of complex ethical and professional issues relating to the application of chemistry to medicine in accordance with current professional and/or ethical codes or practices.
Reading List
None
Additional Information
Graduate Attributes and Skills Not entered
KeywordsCM (L10)
Contacts
Course organiserDr Alison Hulme
Tel: (0131 6)50 4711
Email:
Course secretaryMs Anne Brown
Tel: (0131 6)50 4754
Email:
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information
 
© Copyright 2015 The University of Edinburgh - 27 July 2015 10:50 am