Undergraduate Course: Physical Techniques in Action Level 10 (CHEM10049)
Course Outline
School | School of Chemistry |
College | College of Science and Engineering |
Credit level (Normal year taken) | SCQF Level 10 (Year 4 Undergraduate) |
Availability | Available to all students |
SCQF Credits | 20 |
ECTS Credits | 10 |
Summary | A lecture course show-casing the application of advanced chemical techniques to understanding chemical structure and processes. The course comprises individual lectures courses on: Molecular Detection, Microscopy & Imaging, Structure Dynamics, Neutron Scattering, Solid State NMR, and Photochemistry in Action. Either the Level 10 or Level 11 version of this course (as specified in the degree programme tables) is a compulsory requirement for Year 4/5 students on degrees in Chemical Physics and Chemistry with Materials Chemistry, but can be taken by Year 4/5 students on any Chemistry degree programme. |
Course description |
Lectures are illustrated with examples of the state-of-the-art with respect to experimental and theoretical physical chemistry. Topics include measurements in a range of environments including gas, liquid and solid phases, and with a range of target species, such as biological molecules and functional crystalline materials. Each series of 5 lectures is backed up with examples sessions where students explore a range of problems and obtain feedback to develop their level of understanding.
The course consists of lecture courses that illustrate advanced techniques used in chemistry to measure and understand chemical structure and dynamics.
|
Information for Visiting Students
Pre-requisites | None |
High Demand Course? |
Yes |
Course Delivery Information
|
Academic year 2015/16, Available to all students (SV1)
|
Quota: None |
Course Start |
Semester 2 |
Timetable |
Timetable |
Learning and Teaching activities (Further Info) |
Total Hours:
200
(
Lecture Hours 30,
Seminar/Tutorial Hours 9,
Summative Assessment Hours 2.5,
Revision Session Hours 6,
Programme Level Learning and Teaching Hours 4,
Directed Learning and Independent Learning Hours
149 )
|
Assessment (Further Info) |
Written Exam
100 %,
Coursework
0 %,
Practical Exam
0 %
|
Feedback |
Each 5-hour lecture course is underpinned by an examples class where students are guided on approaching topical questions, with feedback on methods for attempting and solving problems aimed at a steady development of learning throughout the course. |
Exam Information |
Exam Diet |
Paper Name |
Hours & Minutes |
|
Main Exam Diet S2 (April/May) | | 2:30 | |
Learning Outcomes
On completion of this course, the student will be able to:
- Explain the physical principles behind contemporary techniques for determining specific structural and dynamical information in chemical systems.
- Interpret diverse structural and dynamical information from chemical systems using a range of contemporary experimental and computational methods.
- Identify appropriate methods for making specific measurements or to study specific chemical systems.
|
Additional Information
Graduate Attributes and Skills |
The following skills will be developed during the course:
1. Numerical data interpretation and analysis.
2. Unseen problem solving.
|
Keywords | PTIA |
Contacts
Course organiser | Dr Andrew Alexander
Tel: (0131 6)50 4741
Email: |
Course secretary | Ms Anne Brown
Tel: (0131 6)50 4754
Email: |
|
© Copyright 2015 The University of Edinburgh - 27 July 2015 10:50 am
|