| 
 Undergraduate Course: Methods of Mathematical Physics (PHYS10034)
Course Outline
| School | School of Physics and Astronomy | College | College of Science and Engineering |  
| Credit level (Normal year taken) | SCQF Level 10 (Year 4 Undergraduate) | Availability | Available to all students |  
| SCQF Credits | 10 | ECTS Credits | 5 |  
 
| Summary | A course on advanced methods of mathematical physics.  The course aims to demonstrate the utility and limitations of a variety of powerful calculational techniques and to provide a deeper understanding of the mathematics underpinning theoretical physics.  The course will review and develop the theory of: complex analysis and applications to special functions; asymptotic expansions; ordinary and partial differential equations, in particular, characteristics, integral transform and Green function techniques; Dirac delta and generalised functions; Sturm-Liouville theory.  The generality of approaches will be emphasised and illustrative examples from electrodynamics, quantum and statistical mechanics will be given. |  
| Course description | - Revision of infinite series; asymptotic series - Complex analysis: revision, residues and analytical continuation
 - Gamma function
 - Laplace and stationary phase methods; saddle point approximation
 - Dirac's delta function
 - Ordinary differential equations (ODEs): Green functions and solution via series
 - Special functions
 - Fourier transformations: definition, properties and application to ODEs
 - Laplace transforms: definition, properties and application to ODEs
 - Partial differential equations: characterisation and solution via Laplace and Fourier transforms
 - Examples: the wave equation, the diffusion equation and Laplace equation
 
 |  
Information for Visiting Students 
| Pre-requisites | None |  
		| High Demand Course? | Yes |  
Course Delivery Information
|  |  
| Academic year 2025/26, Available to all students (SV1) | Quota:  74 |  | Course Start | Semester 1 |  Timetable | Timetable | 
| Learning and Teaching activities (Further Info) | Total Hours:
100
(
 Lecture Hours 22,
 Seminar/Tutorial Hours 20,
 Summative Assessment Hours 2,
 Revision Session Hours 4,
 Programme Level Learning and Teaching Hours 2,
Directed Learning and Independent Learning Hours
50 ) |  
| Assessment (Further Info) | Written Exam
100 %,
Coursework
0 %,
Practical Exam
0 % |  
 
| Additional Information (Assessment) | Degree Examination, 100% Visiting Student Variant Assessment
 Degree Examination, 100%
 |  
| Feedback | One to one communication during workshops. 
 |  
| Exam Information |  
    | Exam Diet | Paper Name | Minutes |  |  
| Main Exam Diet S1 (December) | Methods of Mathematical Physics Dec Exam | 120 |  |  | Resit Exam Diet (August) | Methods of Mathematical Physics Aug Exam | 120 |  |  
 
Learning Outcomes 
| On completion of this course, the student will be able to: 
        Apply techniques of complex analysis, such as contour integrals and analaytic continuation, to the study of special functions of mathematical physics .Calculate approximations to integrals by appropriate saddle point methods.Be fluent in the use of Fourier and Laplace transformations to solve differential equations and derive asymptotic properties of solutions.Solve partial differential equations with appropriate initial or boundary conditions with Green function techniques.Have confidence in solving mathematical problems arising in physics by a variety of mathematical techniques. |  
Contacts 
| Course organiser | Dr Kristel Torokoff Tel: (0131 6)50 5270
 Email:
 | Course secretary | Ms Dipti Dineshwar Tel:
 Email:
 |   |  |