Undergraduate Course: Variational Calculus (MATH11179)
Course Outline
School | School of Mathematics |
College | College of Science and Engineering |
Credit level (Normal year taken) | SCQF Level 11 (Year 5 Undergraduate) |
Availability | Available to all students |
SCQF Credits | 10 |
ECTS Credits | 5 |
Summary | NB. This course is delivered *biennially* with the next instance being in 2022-23. It is anticipated that it would then be delivered every other session thereafter.
This is a course on the calculus of variations and explores a number of variational principles, such as Hamilton's Principle of Least Action and Shannon's Principle of Maximum Entropy. The approach taken in this course lies at the interface of two disciplines: Geometry and Mathematical Physics. In Geometry you will learn about geodesics, minimal surfaces, etc. In Physics you will learn to elevate Newton's laws to a mathematical principle and discuss lagrangian and hamiltonian formulations. A running theme will be the relationship between symmetries and conservation laws, as illustrated by a celebrated theorem of Emmy Noether's. We will not assume, however, any background in either Physics or Geometry. All the necessary vocabulary and concepts will be introduced in the course.
|
Course description |
- Calculus of variations: Euler-Lagrange equations, general variations
- Newtonian mechanics and conservation laws
- Hamilton's principle of least action
- Noether's theorem
- Hamiltonian formalism
- Isoperimetric problems
- Holonomic and nonholonomic constraints
- Variational PDEs
- Noether's theorem revisited
- Classical field theory
|
Information for Visiting Students
Pre-requisites | Visiting students are advised to check that they have studied the material covered in the syllabus of any pre-requisite course listed above before enrolling. |
High Demand Course? |
Yes |
Course Delivery Information
|
Academic year 2022/23, Available to all students (SV1)
|
Quota: None |
Course Start |
Semester 1 |
Timetable |
Timetable |
Learning and Teaching activities (Further Info) |
Total Hours:
100
(
Lecture Hours 22,
Seminar/Tutorial Hours 5,
Summative Assessment Hours 2,
Programme Level Learning and Teaching Hours 2,
Directed Learning and Independent Learning Hours
69 )
|
Assessment (Further Info) |
Written Exam
80 %,
Coursework
20 %,
Practical Exam
0 %
|
Additional Information (Assessment) |
Coursework 20% Exam 80% |
Feedback |
Not entered |
Exam Information |
Exam Diet |
Paper Name |
Hours & Minutes |
|
Main Exam Diet S1 (December) | Variational Calculus (MATH11179) | 2:00 | |
Learning Outcomes
On completion of this course, the student will be able to:
- Derive the Euler-Lagrange equations for variational problems, including the case of general variations.
- Derive conserved quantities from symmetries, and use them to solve the Euler-Lagrange equations.
- Solve variational problems with constraints: both algebraic and isoperimetric.
- Calculate effectively using Poisson brackets.
|
Reading List
Lecture notes will be provided, which contain ample bibliography with other sources. |
Additional Information
Graduate Attributes and Skills |
Not entered |
Keywords | VarC |
Contacts
Course organiser | Dr Jelle Hartong
Tel:
Email: |
Course secretary | Mr Martin Delaney
Tel: (0131 6)50 6427
Email: |
|
|