THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2022/2023

Timetable information in the Course Catalogue may be subject to change.

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Mathematics : Mathematics

Undergraduate Course: Geometry (MATH10074)

Course Outline
SchoolSchool of Mathematics CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 10 (Year 3 Undergraduate) AvailabilityAvailable to all students
SCQF Credits10 ECTS Credits5
SummaryDifferential geometry is the study of geometry using methods of calculus and linear algebra. It has numerous applications in science and mathematics.
This course is an introduction to this classical subject in the context of curves and surfaces in euclidean space.

There are two lectures a week and a workshop every two weeks. There are biweekly assignments and a closed-book exam in December.
Course description The course begins with curves in euclidean space; these have no intrinsic geometry and are fully determined by the way they bend and twist (curvature and torsion). The rest of the course will then develop the classic theory of surfaces. This will be done in the modern language of differential forms. Surfaces possess a notion of intrinsic geometry and many of the more advanced aspects of differential geometry can be demonstrated in this simpler context. One of the main aims will be to quantify the notions of curvature and shape of surfaces. The culmination of the course will be a sketch proof of the Gauss-Bonnet theorem, a profound result which relates the curvature of surfaces to their topology.

Syllabus:

Curves in Euclidean space: regularity, velocity, arc-length, Frenet-Serret frame, curvature and torsion, equivalence problem.

Calculus in R^n: tangent vectors, vector fields, differential forms, moving frames, connection forms, structure equations.

Surfaces in Euclidean space: regularity, first and second fundamental forms, curvatures (principal, mean, Gauss), isometry, Gauss's Theorema Egregium, geodesics on surfaces, integration of forms, statement of Stokes' theorem, Euler characteristic, Gauss-Bonnet theorem (sketch proof).
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Students MUST have passed: ( Introduction to Linear Algebra (MATH08057) OR Accelerated Algebra and Calculus for Direct Entry (MATH08062)) AND ( Several Variable Calculus and Differential Equations (MATH08063) OR Introductory Fields and Waves (PHYS08053))
Co-requisites
Prohibited Combinations Other requirements None
Information for Visiting Students
Pre-requisitesRequired knowledge may be deduced from the course descriptions and syllabuses of the pre-requisite University of Edinburgh courses listed above. Visiting students are advised to check that they have studied the material covered in the syllabus of each prerequisite course before enrolling.

High Demand Course? Yes
Course Delivery Information
Academic year 2022/23, Available to all students (SV1) Quota:  None
Course Start Semester 1
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 22, Seminar/Tutorial Hours 5, Summative Assessment Hours 2, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 69 )
Assessment (Further Info) Written Exam 80 %, Coursework 20 %, Practical Exam 0 %
Additional Information (Assessment) Coursework 20%, Examination 80%
Feedback Not entered
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S1 (December)2:00
Learning Outcomes
On completion of this course, the student will be able to:
  1. State definitions and theorems and present standard proofs accurately without access to notes/books.
  2. Compute the Frenet-Serret frame of space curves and determine their torsion and curvature in simple examples.
  3. Work accurately with differential forms and perform the basic operations of wedge product and exterior derivative.
  4. Compute the first and second fundamental forms and curvatures of a surface in simple examples.
  5. Apply theory developed in the course to solve simple problems.
Reading List
Recommended books for supplementary reading (not essential):

Differential forms and Applications, Manfredo P. Do Carmo, Springer 1994

Differential Geometry of Curves and Surfaces, Manfredo P. Do Carmo, Prentice-Hall 1976
Additional Information
Graduate Attributes and Skills Not entered
Study Abroad Not Applicable.
KeywordsGeom
Contacts
Course organiserDr Johan Martens
Tel: (0131 6)51 7759
Email:
Course secretaryMiss Greta Mazelyte
Tel:
Email:
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information