THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2022/2023

Timetable information in the Course Catalogue may be subject to change.

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Mathematics : Mathematics

Undergraduate Course: Accelerated Proofs and Problem Solving (MATH08071)

Course Outline
SchoolSchool of Mathematics CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 8 (Year 1 Undergraduate) AvailabilityNot available to visiting students
SCQF Credits10 ECTS Credits5
SummaryThis course is an accelerated version of 'Proofs and Problem Solving' course, intended only for students on the accelerated programme (direct entry to year 2) and students on combined degrees who cannot take that course in their first year. The syllabus is similar to that for 'Proofs and Problem Solving', but some topics less essential to further study are omitted or treated more quickly.
Course description This syllabus is for guidance purposes only:
1. Sets, proofs quantifiers, real numbers, rationals and irrationals.
2. Inequalities, roots and powers, induction.
3. Convergent sequences
4. Least upper bounds. Monotone Convergence. Decimals.
5. Complex numbers, roots of unity, polynomial equations, fundamental theorem of algebra.
6. Euclidean algorithm, prime factorization, prime numbers.
7. Congruence, primality testing.
8. Counting and choosing, binominal coefficients, more set theory.
9. Equivalence relations, functions.
10. Permutations.
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites
Prohibited Combinations Students MUST NOT also be taking Proofs and Problem Solving (MATH08059)
Other requirements This course is an accelerated version of 'Proofs and Problem Solving' course, intended only for students on the accelerated programme (direct entry to year 2) and students on combined degrees who cannot take that course in their first year.
Course Delivery Information
Academic year 2022/23, Not available to visiting students (SS1) Quota:  None
Course Start Semester 1
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 22, Seminar/Tutorial Hours 11, Summative Assessment Hours 2, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 63 )
Additional Information (Learning and Teaching) Students must pass exam and course overall.
Assessment (Further Info) Written Exam 50 %, Coursework 50 %, Practical Exam 0 %
Additional Information (Assessment) Coursework 50%, Examination 50%
Feedback Not entered
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S1 (December)2:00
Resit Exam Diet (August)2:00
Learning Outcomes
On completion of this course, the student will be able to:
  1. Read Pure Mathematics written at undergraduate level, including 'Definitions', 'Theorems' and 'Proofs' and demonstrate understanding of the key ideas.
  2. Write clear meaningful mathematics using appropriate terms and notation and analyse critically elementary Pure Mathematics presented or written by themselves or others.
  3. Be able to work with the fundamental ingredients of sets, and functions between sets, and the basic properties of number systems.
  4. Solve standard and unfamiliar problems on the material taught in the course and using methods developed in the course.
Reading List
Students will be assumed to have acquired their personal copy of
A Concise Introduction to Pure Mathematics, by Martin Liebeck, 4th Ed. 201, CRC Press, £29.99, on which the course will be based. (3rd Ed. will also be acceptable).
Additional Information
Graduate Attributes and Skills Not entered
KeywordsAPPS
Contacts
Course organiserDr James Lucietti
Tel: (0131 6)51 7179
Email:
Course secretaryMr Martin Delaney
Tel: (0131 6)50 6427
Email:
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information