Undergraduate Course: Theory of Elliptic Partial Differential Equations (MATH11184)
Course Outline
School | School of Mathematics |
College | College of Science and Engineering |
Credit level (Normal year taken) | SCQF Level 11 (Year 5 Undergraduate) |
Availability | Available to all students |
SCQF Credits | 10 |
ECTS Credits | 5 |
Summary | NB. This course is delivered *biennially* with the next instance being in 2020-21. It is anticipated that it would then be delivered every other session thereafter.
The partial differential equations (PDEs) plays a central role in many areas of modern science. This course will introduce the fundamental concepts used in the PDE theory such as the notion of a weak solution and Sobolev spaces. The course will then focus on elliptic PDEs and will introduce the basics of modern theory of such PDEs. |
Course description |
Types of weak solutions for elliptic PDEs.
Questions in physics and mechanics giving rise to elliptic PDEs.
Weak differentiability, Sobolev spaces and classical solutions.
Divergence form equations, the Lax-Milgram theorem, solvability of the Dirichlet and Neumann boundary value problems.
Harmonic functions: Mean value theorem, gradient estimates, the Fundamental solution and the Green's function.
Maximum principle for general linear equations, Aleksandrov's maximum principle (with some extensions to non-linear PDEs).
|
Information for Visiting Students
Pre-requisites | None |
High Demand Course? |
Yes |
Course Delivery Information
Not being delivered |
Learning Outcomes
On completion of this course, the student will be able to:
- Demonstrate understanding of Sobolev spaces and their relations to other spaces of functions.
- Reformulate equations of divergence form through integral identities using partial integration so that the Lax-Milgram theorem can be applied.
- Evaluate or estimate the maximum and minimum of solutions of elliptic equation using the maximum principle.
- Infer regularity of solutions from that of given data.
- Explicitly compute the Green/Poisson kernels for the Laplace operator in radially symmetric case and the upper half-space. Estimate first and second order derivatives of solutions via integral norms of solution itself.
|
Reading List
Recommended :
E. Landis, Second Order Equations of Elliptic and Parabolic Type, AMS 1998
Qing Han, Fanghua Lin, Courant Institute Lecture notes, NYU, 2011
D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 2011 |
Additional Information
Graduate Attributes and Skills |
Not entered |
Keywords | TEPDE |
Contacts
Course organiser | Dr Martin Dindos
Tel:
Email: |
Course secretary | Mr Martin Delaney
Tel: (0131 6)50 6427
Email: |
|
|