Undergraduate Course: Work-Based Professional Practice B in Data Analytics (INFR10075)
Course Outline
School | School of Informatics |
College | College of Science and Engineering |
Credit level (Normal year taken) | SCQF Level 10 (Year 3 Undergraduate) |
Availability | Not available to visiting students |
SCQF Credits | 40 |
ECTS Credits | 20 |
Summary | This course is work-based and is focused on the real-world application of data science in a workplace environment. It includes experiencing how statistical modelling , machine learning and relevant algorithms are applied to conduct data science studies on real data in a commercial environment. Students who do this course will obtain practical experience in the design, implementation, and evaluation of data science approaches. |
Course description |
*This course is not a stand-alone introduction to applied data analytics and can only be delivered as part of the BSc Hons Graduate Apprenticeship in Data Science.*
This course provides Graduate Apprenticeship students with a holistic approach to business problem solving to support decision making and providing business insights. It is a key stage in the learning and development strategy of the graduate apprenticeship programme in Data Science. It is project based, introduced in the university and facilitated in the workplace around team-based projects.
This is a work-based learning course worth 40-credits. Students undertake an eight-month professional practice period in year 3 over semester 2 and the summer and are expected to spend around 400 hours in total on this course. This is in addition to work activities the employer will be setting. The SLICC will be planned to cover the group of graduate apprenticeship students working with a specific employer and the work will directly link to their own contexts in the workplace.
The main topics are: the application of data science tools and techniques, developing an understanding of the application of machine learning, statistical modelling and algorithms to solve business problems. In addition, this course covers the meta skills required to operate in a professional environment including graduate attributes for: lifelong learning, aspiration and personal development, outlook and engagement, research and enquiry, personal and intellectual autonomy, personal effectiveness and communication in both university and the workplace
The year 3 taught courses in computing and mathematics, particularly those in statistics and machine learning are applied to real world data science problems and projects.
Students will be directed in their learning using the Student-Led Individually Created Course (SLICC) approach. They will plan, propose, carry out, reflect on and evaluate a data analysis study from their own work context in data analytics. The SLICC framework requires that students use the generic learning outcomes to articulate their learning in their own defined project, reflect frequently using a blog, and collect and curate evidence of their learning in an e-portfolio. They receive relevant formative feedback on a Midway Reflective Report, which is the same format as the Final Reflective Report, which forms the summative assessment. All this is with the guidance of a professional practice academic tutor.
The course will encourage appraisal of students¿ own practical experiences and allow them to reflect on their learning in the context of data analytics.
|
Course Delivery Information
Not being delivered |
Learning Outcomes
On completion of this course, the student will be able to:
- Demonstrate an understanding of the cross-disciplinary nature of data science, and the complexities, challenges and wider implications of the contexts in which data science problems occur in the workplace
- Draw on and apply relevant data science approaches, tools and frameworks for data enquiry to different settings in real world situations;
- Draw on and apply relevant data science approaches, tools and frameworks for data enquiry to different settings in real world situations;
- Frame and address data science business problems, questions and issues as a data study project, being aware of the environment and context in which the problem exists;
- Review, evaluate and reflect upon knowledge, skills and practices in data science.
|
Reading List
Bolton, G. 2010.Reflective Practice: Writing and Professional Development. 3rd Ed. London: Sage
Boud, D., Keogh, R. and Walker, D. 2005.Reflection: Turning Experience into Learning. Oxon: Routledge Falmer
Fook, J. and Gardner, F. 2007.Practising critical reflection : a resource handbook Maidenhead: Open University Press
Kolb D.A. 1984.Experiential learning : experience as the source of learning and development New Jersey: Prentice Hall
Moon, J.A.. (2006). Learning journals: a handbook for reflective practice and professional development (2nd edition). Abingdon: Routledge. Mumford, J. and
Roodhouse, S. (eds.) (2012). Understanding work based learning. Farnham: Gower.
Tarrant, P. (2013). Reflective practice and professional development. London: SAGE
Williams, K., Woolliams, M. and Spiro, J. 2012. Reflective writing Basingstoke: Palgrave Macmillan |
Additional Information
Graduate Attributes and Skills |
Development of graduate attributes are a key component of a graduate apprenticeship. In this course there is specific reference to the development and application of skills and attributes to engage effectively on data analysis issues in the workplace, including problem solving, communicating clearly and for reflective thinking. |
Keywords | Graduate Apprenticeship,PwC,Data Science |
Contacts
Course organiser | Mrs Alison Heather Yorston
Tel:
Email: |
Course secretary | |
|
|