Undergraduate Course: Evolution of the Modern Earth and Cyprus Excursion for Geologists (EASC10121)
Course Outline
School | School of Geosciences |
College | College of Science and Engineering |
Credit level (Normal year taken) | SCQF Level 10 (Year 4 Undergraduate) |
Availability | Available to all students |
SCQF Credits | 20 |
ECTS Credits | 10 |
Summary | Evolution of the modern earth from Recent back to Palaeozoic time, with emphasis on continental margins and ocean basins, supported by a two-week field excursion to Cyprus. |
Course description |
The course consists of two parts, which build on information given in previous courses.
Semester 1 consists of a series of 18 thematic, process-orientated lectures and case histories related to the evolution of the earth, mostly during Mesozoic to recent time. The course will integrate information from a wide range of subjects including sedimentology, palaeoceanography, tectonics and magmatism. The first part will consider fundamental processes related to the evolution of continents and ocean basins on a global basis (e.g. results of ocean drilling and palaeoceanography). The later lectures will focus on sedimentation in mountain belts (e.g. Himalayas). Fundamental principles will be illustrated with specific geological case histories. A one day field trip near the beginning of the course to Ballantrae, SW Scotland will introduce you to a range of ophiolitic rocks, melange, fore-arc basin sediments and structures, and is also intended help you get to know others from different degree streams.
***There will be an excursion to Ballantrae taking place in October. This trip will leave from the Grant Institute at 8am and return at approx. 8pm the same day. This trip is compulsory and examinable. More information regarding this trip will be posted on LEARN***
Semester 2 will mainly consist of preparation for the Cyprus excursion at the end of the semester. There will be up to seven preparatory lectures/discussion sessions on the geology of Cyprus in its regional setting and other useful information; this will also will integrate and build on material from semester 1. You will study c. up to 30 thin sections of key rock types in Cyprus that we will see during the excursion and you will make summary descriptions of these in a field notebook that you will use in Cyprus, for reference. This will help ensure that key skills in interpreting thin sections are retained and developed in 4th year. You will also prepare a two-page extended abstract of a paper related to Cyprus geology, chosen by yourself from a list of suitable papers. You will later present and discuss this paper in the field, followed by submission of a follow-up two-page summary of the geology relevant to your chosen paper you observed in the field. Near the end of semester 1 you will be set an essay which counts towards the course assessment. There will be a degree exam in May covering both semester 1 and semester 2 material, including the Cyprus excursion. The thin section study will be assessed together with the field notebook after the Cyprus excursion.
***Field course locations may change for a variety of reasons, including security risks, increased costs or inability to access field locations. Any changes to the main destination of the field course will be announced as soon as possible.***
|
Information for Visiting Students
Pre-requisites | Must have taken similar courses as pre-requisites. Acceptance into the course will be on CO discretion. |
High Demand Course? |
Yes |
Course Delivery Information
|
Academic year 2019/20, Available to all students (SV1)
|
Quota: None |
Course Start |
Full Year |
Timetable |
Timetable |
Learning and Teaching activities (Further Info) |
Total Hours:
200
(
Lecture Hours 28,
Seminar/Tutorial Hours 4,
Fieldwork Hours 80,
Feedback/Feedforward Hours 2,
Summative Assessment Hours 3,
Programme Level Learning and Teaching Hours 4,
Directed Learning and Independent Learning Hours
79 )
|
Assessment (Further Info) |
Written Exam
75 %,
Coursework
25 %,
Practical Exam
0 %
|
Additional Information (Assessment) |
Coursework: 25%
Exam: 75%
Coursework:
1. Essay in semester 1 related to topics in Evolution of the Modern Earth-15%
2. Extended abstract related to paper and field observations during Cyprus excursion-5%
3. Cyprus notebook, including thin section petrographic summaries-5%
Assessment deadlines
Evolution of the Modern Earth Essay: Semester 1 Week 9 Friday
Illustrated Summary: Semester 2 Week 11
Cyprus Notebook Hand in: Semester 2 May Diet (at end of trip)
Written Exam: Semester 2 May Exam Diet
|
Feedback |
1. Course discussion seminars, as advertised in semester 1;
2. Group discussion of Cyprus geology in semester 2;
3. Peer and staff feedback following student presentations during Cyprus excursion
4. Individual feedback on Cyprus extended abstracts and notebooks.
5. Individual and group feedback and discussion during Ballantrae and Cyprus excursions.
http://www.ed.ac.uk/student-administration/exams/regulations/common-marking-scheme
|
Exam Information |
Exam Diet |
Paper Name |
Hours & Minutes |
|
Main Exam Diet S2 (April/May) | Evolution of the Modern Earth and Cyprus Excursion for Geologists | 3:00 | |
Learning Outcomes
On completion of this course, the student will be able to:
- Taking students to the research frontier in selected topics;
- Synthesis and integration across subject boundaries;
- Consolidation of rock recognition and petrographic skills;
- Learning to present and discuss geological information in a field context;
- Preparation for post-graduation life in the professional world.
|
Reading List
You are expected to study a minimum of two recommended papers for each lecture topic, as in the list below (most are on LEARN). You are also encouraged to read widely and a selection of relevant papers is available in labelled box diagrams in the dungeon (you may borrow individual papers to make photocopies for your own use but please be sure to return them after use).
Suggested references for sem 1 lecture course
1 & 2 D. Kroon: Pelagic sediments
Seibold, E and Berger, W.H., 1982. The Sea Floor, chapter 3. Sources and composition of marine sediments, Springer-Verlag, pages 54-76.
Seibold, E. and Berger, W.H., 1982. The Sea Floor, chapter 8. Patterns of Deep Sea Sedimentation, Springer-Verlag, pages 181-201
3. A Robertson: Sedimentation-Early rift phase
Gawthorpe, R.L., Leeder, M.R., 2000. Tectono-sedimentary evolution of active extensional basins. Basin Research 12, 195-218.
Tucholke, B.E., Sawyer, D.S., Sibuet, J.-C., 2007. Break-up of the Newfoundland-Iberia rift. In Karner, G.D. et al. (eds). Imaging, Mapping and Modelling Continental Lithosphere Extension and Breakuo Geological Society, London Special Publication 292, 9-46.
4. A Robertson: Rift and passive margin sedimentation
Larsen, H.C., 2005. Investigations of rifted margins. JOIDES Journal 85-90.
Manatschal, G., Müntener, O., Lavier, L.L., Misshull, T.A., Peron-Pinvidic, G., 2007. Observations from thee Alpine Tethys and the Iberia-Newfoundland margins pertinent to the interpretation of continental breakup. In Karner, G.D. et al. (eds). Imaging, Mapping and Modelling Continental Lithosphere Extension and Breakuo Geological Society, London Special Publication 292, 291-324.
5. A. Robertson Sedimentation on mature passive margins
Reading H.G. Ed. Sedimentary Environments and Facies, Blackwell, 3rd edit,
Ch, Deep Seas, Stow et al. p, 395-451.
Einsele, G. Sedimentary Basins, Springer-Verlag Ch 5 Oceanic sediments 177-231
Note-In library; copies in dungeon or see AHFR
6. Robertson: British Mid-ocean Ridge project and oceanic crust.
Humphries, S., 2002. Altered rock and seafloor massive sulphide deposits: the record of hydrothermal processes. JOIDES Journal, 28, No 1, 67-72
J. A. Pearce., 2002. The Oceanic Lithosphere. JOIDES Journal, 28, No 1, 61-66.
7. G. Fitton: Large igneous provinces
Coffin, M.F. & O. Eldholm (1994) Large igneous provinces: crustal structure, dimensions, and external consequences, Reviews of Geophysics, 32, 1-36.
Wignall, P.B., (2001) Large igneous provinces and mass extinctions. Earth-Science Reviews 53, 1 ¿ 33.
8. A Robertson: Arc-trench sedimentation
Plank, T., 2002. Subduction factory input and output JOIDES Journal, 28, No 1, 73-77.
Moore, C. and Silver, E., 2002. Fluid flow in accreting and eroding convergent margins. Journal, 28, No 1, 91-96. (given out in class)
9. A. Robertson: Backarc and fore-arc basins
Underwood, M B and others, l995. Sedimentation in forearc basins, trenches and collision zones, of the western Pacific: a summary of results from the Ocean Drilling Program. American Geophysical Union, Geophysical Monograph 88, In B Taylor and J Natland (eds). Active Margins and Marginal Basins of the Western Pacific, 315-354. (copies in the 4th yr. room).
Reagan, M. K. et al. Proceedings of the International Ocean Discovery Program, 352: College Station, TX (International Ocean Discovery Program). ,
10.14379/iodp.proc.14352.12015. Also Reagan et al., 2017, Subduction Initiation and Ophiolite Crust: New Insights From IODP Drilling. International Geology Review, doi: 10.1080/00206814.2016.1276482
10. A. Robertson: Ancient pelagic sediments
Jenkyns, H.C. Pelagic sediments, In Reading, H.G. Sedimentary Environments and Facies, 2nd. l986
Robertson, A H F Robertson and Hudson, J.D., l974 Pelagic sediments in the Cretaceous-Miocene development of Cyprus. In: Hsu, K and Jenkyns, H.C. (eds). Pelagic Sediments on Land and Under the Sea. Special Publication of the International Association of Sedimentologists, No. 1.
11. A. Robertson: Ophiolite geology
Special issue of "Elements", 2014, (vol 10, no. 2). International Magazine of Mineralogy, Geochemistry and Petrology, Ed. Y Dilek and H. Furness. (browse several papers; e.g. by Julian Pearce).
12. A. Robertson: Neotectonic evolution of the Eastern Mediterranean
Taymaz et al. 1991, Active tectonics of the north and central Aegean Sea. geophysics Journal international, 106, 433-490.
Kahle et al., 2000. GPS-derived strain rate field within the boundary zones of the Eurasian, African and Arabian plates. Journal of Geophysical Research, 105, 23353-23370
13. A. Robertson: Himalayas/Tibet
1. Gaetani, M and Garzanti, E., l991. Multicycle history of the northern India continental margin (North western Himalayas). American Association of Petroleum Geologists Bulletin 75, 127-1446.
2. Robertson, A H F and Degnan, M P l993 Sedimentology and tectonic implications of the Lamayuru Complex: deep-water facies of the Indian passive margin, Indus Suture Zone, Ladakh Himalaya. In: Treloar, P.J. & Searle. M.P. (eds). Himalayan Tectonics. Geol. Soc. London, Spec. Publ., 74, 299-321.
3. Khan, M.A. et al. l993. Evolution of the lower arc crust in Kohistan, N Pakisatan: temporal arc magmatism through early, mature and intra-arc rift stages. In: Treloar and Searle (eds). Himalayan Tectonics, Geol. Soc. London Special Pub., 74, 123-138.
14. A. Robertson: Oman: continental margin-oceanic crust emplacement
A.H.F. Robertson and M.P. Searle (l990). The northern Oman Tethyan continental margin: stratigraphy, structure, concepts and controversies. In: Robertson, A.H.F., Searle, M.P. and Ries, A.C. 1990 (Eds). The Geology and Tectonics of the Oman Region. Special Publication of the Geological Society of London, 49, 3-44
15. H. Sinclair: The growth of mountain topography
Davis, D., Supper, J. & Dahlen, F.A. (1983) Mechanics of Fold-and-Thrust Belts and Accretionary Wedges. Journal of Geophysical Research, 88, 1153-1172
Lave, J. & Avouac, J.P. (2000) Active Folding of Fluvial Terraces across the Siwaliks Hills, Himalayas of Central Nepal. Journal of Geophysical Research-Solid Earth, 105, 5735-5770
16. H Sinclair: Controls on sediment yield from mountain belts
Milliman, John D., and James PM Syvitski. "Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers." The Journal of Geology (1992): 525-544.
Burbank, Douglas W., et al. "Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas." Nature 379.6565 (1996): 505-510.
17. H Sinclair: Sediment flux by mountain rivers
Hallet, B., and Molnar, P., Distorted drainage basins as markers of crustal strain east of the Himalaya. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 106, NO. B7, PP. 13,697-13,709, 2001 doi:10.1029/2000JB900335
Burbank, Douglas W., and Robert S. Anderson. Tectonic geomorphology. Wiley. com, 2011. (relevant parts; ask Hugh Sinclair).
18 Sinclair: Sediment trapping in foreland basins
Jordan, T. E., (1981) Thrust Loads and Foreland Basin Evolution, Cretaceous, Western United States, AAPG Bulletin. Volume 65, Issue 12. (December), Pages 2506 - 2520
Naylor, M., Sinclair, H. D., (2008) Pro- versus retro-Foreland Basins: Basin Research Volume 20, Issue 3, pages 285¿303, 2008
Hawkins, J. 2003. Geology of supra-subduction zones-implications for the origin of ophiolites. In: Dilek, Y and Newcomb, S. (eds). Ophiolite Concept and the Evolution of Geological Thought. Geological Society of America Special Paper 373, 227-268.
|
Additional Information
Graduate Attributes and Skills |
- Professional level writing skills; students will condense scientific findings and arguments from a topical field in modern earth science research and write a short essay
- Participation in active group discussions, and peer-learning between the Geology and GPG cohorts
- Oral presentation skills during student presentations as part of Cyprus excursion
- Integration of information from contrasting sources (scientific reports and papers with individual field observations)
- High-level individual observation and interpretation followed by formative discussion and peer assessment (portfolio exercise |
Keywords | evolution,modern earth,Cyprus |
Contacts
Course organiser | Prof Alastair Robertson
Tel: (0131 6)50 8546
Email: |
Course secretary | Ms Katerina Sykioti
Tel: (0131 6)50 5430
Email: |
|
|