THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2017/2018

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Biological Sciences : Postgraduate

Postgraduate Course: Evolution of Cryptogams and Fungi (PGBI11048)

Course Outline
SchoolSchool of Biological Sciences CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 11 (Postgraduate) AvailabilityNot available to visiting students
SCQF Credits20 ECTS Credits10
SummaryThis course covers the evolution of vascular and non-vascular plants, and fungi.

The non-vascular plants (cryptogams), i.e. mosses, liverworts, hornworts, and the algae are structurally diverse and phylogenetically heterogeneous: many are more closely related to various groups of heterotrophic protists than to each other. The course will examine the molecular and ultrastructural evidence for relationships among algal and fungal groups, and the extraordinary variation in morphology, dispersal mechanisms and life histories will be surveyed with reference to current controversy about microbial biogeography and conservation. The diversity and evolution of Fungi and lichens will be presented. Special mechanisms of evolution, not operating in higher plants, particularly endosymbiosis, will be highlighted. The time-scale of evolution of algae and bryophytes will be examined and the evolution of terrestrial plants from green algae discussed in relation to ultrastructural and molecular data and fossil evidence from the early Palaeozoic. The origins, diversity and distributions of bryophytes will be discussed.

Today, most terrestrial environments are dominated, in terms of biomass and productivity, by flowering plants. This is a relatively recent phenomenon, however, and for much of the time since vascular plants colonized the land, probably in the Silurian (417-433 Mya), the principal groups of plants on land were spore-producing 'pteridophytes' and various types of early seed plants. This course will examine the time-scale and nature of land plant evolution since the Silurian, the fossil and molecular genetic evidence for land plant evolution, and the special features of the principal plant groups. We will discuss the evolutionary significance of key innovations in structure and life history and explore their consequences for plant geography and conservation. Throughout, full use will be made of the excellent collections of living plants at RBG
Course description Not entered
Entry Requirements (not applicable to Visiting Students)
Pre-requisites Co-requisites It is RECOMMENDED that students also take Biodiversity (ZLGY10017)
Prohibited Combinations Other requirements None
Additional Costs none
Course Delivery Information
Academic year 2017/18, Not available to visiting students (SS1) Quota:  None
Course Start Full Year
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 200 ( Lecture Hours 30, Programme Level Learning and Teaching Hours 4, Directed Learning and Independent Learning Hours 166 )
Assessment (Further Info) Written Exam 100 %, Coursework 0 %, Practical Exam 0 %
Additional Information (Assessment) 3 hour examination (2 essays and 6 short answer questions) at the end of semester 2.
Feedback Not entered
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S2 (April/May)Cryptogams and Fungi3:00
Learning Outcomes
1.Basic understanding of algal and fungal diversity (incl. morphology, cell structure and level of organization) to phylum level, and their association as lichens.
2.Ability to evaluate different sources of phylogenetic information (e.g. molecular sequence data, ultrastructure, morphology) for understanding algal, fungal and protist evolution.
3.Knowledge of the evolutionary history and time-scale of non-vascular plants, including the development of the first terrestrial plants from green algae.
4.Discussion of key adaptations in heterokontophyte algae and in the earliest land plants.
5.Awareness of the special features of algal, fungal and bryophyte life cycles and evaluation of how these may affect conservation strategies for non-vascular plants.
6.Knowledge of life cycle variation in land plants and the genetic consequences of different life cycle patterns
7.Understanding of the special features of the life cycle and dispersal mechanisms are relevant to the development of conservation strategies for (non-angiosperm) vascular plants.
8.Ability to interpret the structure and functional anatomy of plants belonging to the principal groups of living and fossil land plants.
9.Knowledge of the history and time-scale of land plant evolution, and evaluation of the principal types of evidence underlying
10.Discussion of key adaptations occurring during land-plant evolution.
Reading List
None
Additional Information
Graduate Attributes and Skills Not entered
KeywordsEvolution of Cryptogams & Fungi
Contacts
Course organiserDr Louis Ronse De Craene
Tel: (0131) 248 2804
Email:
Course secretaryMiss Sarah Harvey
Tel: (0131 6)51 7052
Email:
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information