School | School of Physics and Astronomy |
College | College of Science and Engineering |
Credit level (Normal year taken) | SCQF Level 10 (Year 3 Undergraduate) |
Availability | Available to all students |
SCQF Credits | 10 |
ECTS Credits | 5 |
Summary | The main aim of this course is to develop an understanding of how numerical computations are implemented in practice. It will introduce the simplest
ways to implement functionality and then show how to achieve the same using library packages. There will be significant hands-on programming in Java. It is also intended to provide an opportunity for specialists to use a different language (this year either Python or C++).
|
Course description |
This course is taught through a combination of hands-觔n programming exercises in the CPLab. Two routes will be offered through the checkpoints: a Java-觔nly route, and a multilingual route (aimed at specialists). At present students may elect to use Python or C++ subject to the agreement of the course organiser.
The course material will include:
- Matrices and matrix manipulation
- Minimisation methods
- Parameter fitting to data sets ( Chi squared and maximum likelihood)
- Random number generation, non uniform distributions
- Monte Carlo data set generation
- Simulation and analysis of a muon decay lifetime experiment
- Discrete fourier transforms
- Other numerical topics
|