Undergraduate Course: Atmospheric Dynamics (METE10001)
Course Outline
School | School of Geosciences |
College | College of Science and Engineering |
Credit level (Normal year taken) | SCQF Level 10 (Year 4 Undergraduate) |
Availability | Available to all students |
SCQF Credits | 10 |
ECTS Credits | 5 |
Summary | Introduces the fundamentals of atmospheric circulation that govern weather and climate in the tropics and mid-latitudes.This includes large-scale flows and eddies, the General Circulation and mid-latitude storm systems. Meteorological data will be used to illustrate air flow patterns, jetstreams, mid-latitudes cyclones and their intensification. |
Course description |
Lectures 1-2: Overview and vertical structure
Hydrostatic equilibrium in the atmosphere. Potential temperature and its relevance to the vertical stability of a compressible atmosphere.
Lectures 3-4: Equations of motion for a rotating Earth
The Navier-Stokes equations for an inertial frame of reference of a compressible fluid based on Newton's first law of motion and the conservation of mass. The Navier-Stokes equations for a frame of reference rotating with the earth. Approximations for large-scale flow. Configuration of forces.
Lectures 5-8: Synoptic-scale approximations and frictional forces
The order of magnitude of forces and accelerations present in synoptic-scale weather patterns. Geostrophic and thermal wind approximations. Estimates of winds in synoptic-scale systems from pressure and temperature gradients. Mean and eddy flow. Wind variation with height due to frictional forces in the boundary layer.
Lectures 9-11: Vorticity and Divergence
Vorticity and divergence definitions for meteorology. Linking divergence and vertical velocity Potential vorticity and its usefulness as tool for understanding fluid motion.
Lecture 12-13: Tropical and mid-latitude circulations
The experimental evidence from "rotating dishpan" experiments that degree of departure from zonal symmetry depends on rotation rate and horizontal temperature gradients. Axi-symetric flow and conservation of angular momentum. Meridional circulations in the tropics and their relation to the sub-tropical jet.
Lectures: 14-16: Rossby wave and cyclone models
The motivation for and limitations of atmospheric wave motion as a perturbation from a basic flow. Barotropic and baroclinic conditions. Mid-latitude planetary-scale waves and the Eady model of mid-latitude cyclone growth. Climate change effects on mid-latitude storm behaviour.
|
Information for Visiting Students
Pre-requisites | None |
High Demand Course? |
Yes |
Course Delivery Information
|
Academic year 2017/18, Available to all students (SV1)
|
Quota: None |
Course Start |
Semester 1 |
Timetable |
Timetable |
Learning and Teaching activities (Further Info) |
Total Hours:
100
(
Lecture Hours 16,
Seminar/Tutorial Hours 4,
Feedback/Feedforward Hours 1,
Summative Assessment Hours 2,
Programme Level Learning and Teaching Hours 2,
Directed Learning and Independent Learning Hours
75 )
|
Assessment (Further Info) |
Written Exam
80 %,
Coursework
20 %,
Practical Exam
0 %
|
Additional Information (Assessment) |
Examination at the end of Semester 1 in December (80%) and tutorial questions (20%)
The student will use web-resources to answer a series of tutorial style questions and perform calculations. Detailed information on the tutorial will be provided in class and the students will have the opportunity to ask questions in one of the tutorial slots before the hand-in. Since tutorial style questions also form part of the exam this will provide feedback that will aid with exam preparation.
The will be one coursework assignment submission. This assignment will be due the Thursday November 10, 2016 by 12 noon. Submissions should be electronic and hard copies. |
Feedback |
Exam marking includes comments to students. Examples of feedback can be found here: http://www.ed.ac.uk/schools-departments/geosciences/teaching-organisation/staff/feedback-and-marking |
Exam Information |
Exam Diet |
Paper Name |
Hours & Minutes |
|
Main Exam Diet S1 (December) | | 2:00 | |
Learning Outcomes
On completion of this course, the student will be able to:
- Develop a detailed, integrated knowledge of the fundamentals of atmospheric dynamics that govern weather and climate in the mid-latitudes and the tropics.
- Learn how to apply fundamental equations of fluid flow to understand atmospheric circulation, wind patterns, jet streams, and mid-latitudes cyclone evolution.
- Explain the physical laws governing the structure and evolution of atmospheric phenomena spanning a broad range of spatial and temporal scales.
- Develop a solid background in the mathematical description of atmospheric and geophysical fluid dynamics, and apply mathematical tools to study atmospheric processes
|
Reading List
Applied Atmospheric Dynamics
Lynch, Amanda H. and Cassano, John, J ISBN-10: 0470861738
Atmosphere Ocean and climate Dynamics
Marshall, J. and R. Plumb ISBN-10: 0125586914
Atmospheric Science: An Introductory Survey
Wallace, John M.; Hobbs, Peter V. ISBN: 9780127329512
Mid latitude Atmospheric Dynamics
Martin, J. ISBN-10: 0470864656
An Introduction to Dynamic Meteorology
Holton, James R. ISBN 0123340151 |
Additional Information
Graduate Attributes and Skills |
Not entered |
Additional Class Delivery Information |
2 one-hour lectures per week |
Keywords | Atm Dynamics |
Contacts
Course organiser | Dr Massimo Bollasina
Tel: (0131 6)51 3464
Email: Cinzia.Discolo@ed.ac.uk |
Course secretary | Mr Matthew Hathaway
Tel: (0131 6)51 7274
Email: |
|
© Copyright 2017 The University of Edinburgh - 6 February 2017 8:45 pm
|