Undergraduate Course: Dynamics 4 (MECE10002)
Course Outline
School | School of Engineering |
College | College of Science and Engineering |
Credit level (Normal year taken) | SCQF Level 10 (Year 4 Undergraduate) |
Availability | Available to all students |
SCQF Credits | 10 |
ECTS Credits | 5 |
Summary | The Dynamics 4 course provides an understanding of core aspects of advanced dynamic analysis, dealing with system modelling, dynamic response and vibration analysis, structural dynamics both in the linear and non-linear regimes, wave propagation and the dynamics of continuous and multi-degree of freedom systems. The main objective os to obtain an understanding and appreciation of the potential and limits of analytical solutions and the value of these in underpinning modern computer methods for simulating dynamic structural response. |
Course description |
The Dynamics 4 course covers the following three main subject areas:
1. The Lagrange method of analytical dynamics. This is a formal approach for setting up equations of motion for complex dynamic systems with dynamic constraints (constrained motions). Free Body Diagrams (FBD) prove quite difficult when dealing with complex systems which operate under dynamic constraints. Lagrange¿s method, however, allows the derivation of correct Equations of Motion (EoM) through formal calculations from the energy functions of the system.
2. Wave propagation in continuous systems. Systematic approaches for deriving the parameters of lumped-parameter descriptions. Properties of wave propagation, including sound propagation, and the standing waves which characterize the fundamental vibration modes of continuous systems with boundaries.
3. Vibration of multi-degree-of-freedom systems, using the more formal approach of principal coordinate analysis to describe vibration behaviour, and to analyse vibration hazards in engineering structures.
|
Entry Requirements (not applicable to Visiting Students)
Pre-requisites |
|
Co-requisites | |
Prohibited Combinations | |
Other requirements | None |
Information for Visiting Students
Pre-requisites | None |
High Demand Course? |
Yes |
Course Delivery Information
|
Academic year 2017/18, Available to all students (SV1)
|
Quota: None |
Course Start |
Semester 1 |
Timetable |
Timetable |
Learning and Teaching activities (Further Info) |
Total Hours:
100
(
Lecture Hours 20,
Seminar/Tutorial Hours 10,
Formative Assessment Hours 1,
Summative Assessment Hours 2,
Programme Level Learning and Teaching Hours 2,
Directed Learning and Independent Learning Hours
65 )
|
Assessment (Further Info) |
Written Exam
100 %,
Coursework
0 %,
Practical Exam
0 %
|
Additional Information (Assessment) |
Final Examination 100% |
Feedback |
Not entered |
Exam Information |
Exam Diet |
Paper Name |
Hours & Minutes |
|
Main Exam Diet S1 (December) | Dynamics 4 | 2:00 | | Resit Exam Diet (August) | | 2:00 | |
Learning Outcomes
On completion of this course, the student will be able to:
- Apply virtual work-based methods to dynamical systems, relating between Lagrangian and Newtonian Mechanics.
- Derive system differential equations of motion for dynamical systems based on energy based approaches (e.g. Lagrange's method).
- Recognise forms of advanced dynamical behaviour, such as system instability and non-linearity, and appreciate their effects on the dynamical response and methods used to analyse them.
- Know the common wave equations for basic structural elements and be able to use these to find natural frequencies and mode shapes.
- Analyse multi-degree of freedom systems to obtain frequencies (eigenvalues) and mode shapes (eigenvectors), and understand the use of Principal Coordinates in system response.
|
Reading List
S.S. Rao. Mechanical Vibrations (5th Edition in SI units), Prentice Hall, ISBN 978-981-06-8712-0, 2011.
|
Additional Information
Graduate Attributes and Skills |
Not entered |
Keywords | Dynamics,Vibrations,Wave Propagation,System Response,Continuous Systems,Discrete Systems |
Contacts
Course organiser | Dr Filipe Teixeira-Dias
Tel: (0131 6)50 6768
Email: |
Course secretary | Miss Emily Rowan
Tel: (0131 6)51 7185
Email: |
|
© Copyright 2017 The University of Edinburgh - 6 February 2017 8:44 pm
|