Postgraduate Course: Natural Language Understanding (Level 11) (INFR11061)
Course Outline
School | School of Informatics |
College | College of Science and Engineering |
Credit level (Normal year taken) | SCQF Level 11 (Year 4 Undergraduate) |
Availability | Available to all students |
SCQF Credits | 10 |
ECTS Credits | 5 |
Summary | This course explores current research into interpreting natural language. Motivations for this study range from foundational attempts to understand how people interpret communication to entirely practical efforts to engineer systems for performing a variety of language tasks, such as information extraction, question answering, natural language front ends to databases, human-robot interaction and customer relationship management, to name a few.
This course represents an introduction to the theory and practice of computational approaches to natural language understanding. The course will cover common parsing methods for sentences, discourse and dialogue, and it will also address lexical processing tasks such as word sense disambiguation and clustering. We will study state of the art symbolic techniques in deep and shallow language processing, as well as statistical models, acquired by both unsupervised and supervised machine learning from online linguistic resources. Students will have the opportunity to explore what they have learned in written and practical assignments. These assignments will be designed to enable students to gain an understanding for the pervasiveness of language ambiguity at all levels and the problems this poses for automated language understanding, and for the relative strengths and weaknesses of the various theories and engineering approaches to these problems. |
Course description |
Parsing
* Advanced parsing models; e.g., headed PCFGs
* Grammar Induction
* Discriminative Parsing
* Shallow parsing
* Human models of sentential parsing (e.g., incrementality)
Semantic Processing
* Semantic Construction in wide-coverage online grammars
* Word sense disambiguation
* clustering, similarity distributions
* lexical subcat acquisition and semantic role labelling
* Human models of lexical processing (e.g., semantic priming)
Discourse
* Anaphora resolution
* Discourse segmentation
* Dialogue act recognition
* Discourse parsing (including learning discourse structure)
* Human models of discourse and dialogue (e.g., the alignment model)
* Advanced topics
Relevant QAA Computing Curriculum Sections: Artificial Intelligence, Human-Computer Interaction (HCI), Natural Language Computing
|
Information for Visiting Students
Pre-requisites | None |
High Demand Course? |
Yes |
Course Delivery Information
|
Academic year 2017/18, Available to all students (SV1)
|
Quota: None |
Course Start |
Semester 2 |
Timetable |
Timetable |
Learning and Teaching activities (Further Info) |
Total Hours:
100
(
Lecture Hours 20,
Summative Assessment Hours 2,
Programme Level Learning and Teaching Hours 2,
Directed Learning and Independent Learning Hours
76 )
|
Assessment (Further Info) |
Written Exam
70 %,
Coursework
30 %,
Practical Exam
0 %
|
Additional Information (Assessment) |
Practical exercises, addressing semantic tasks such as word sense disambiguation and discriminative parsing.
You should expect to spend approximately 35 hours on the coursework for this course.
If delivered in semester 1, this course will have an option for semester 1 only visiting undergraduate students, providing assessment prior to the end of the calendar year. |
Feedback |
Not entered |
Exam Information |
Exam Diet |
Paper Name |
Hours & Minutes |
|
Main Exam Diet S2 (April/May) | | 2:00 | |
Learning Outcomes
On completion of this course, the student will be able to:
- Students should be able to use and explain appropriate state-of-the-art symbolic parsing techniques, and, where a labelled corpus is available, statistical parsing techniques (generative and discriminative)
- Given an NLU system, students should be able to choose appropriate evaluation metrics for the system, use error analysis to propose improvements, and relate it to features of human models of language interpretation at various levels of processing
- Given an example of a problem in coreference resolution, discourse segmentation, and discourse parsing, students should be able to provide a written description of how current symbolic and statistical techniques help solve the problem
- Given a model and a labelled corpus, students should be able to employ existing ML software packages to train the model on the corpus in order to perform a lexical semantic task
- Given an open-ended problem of choosing informative features for a particular NLP task and a description of the available training resources, the student should be able to give a well-justified, written and/or practical, selection of such informative features
|
Reading List
Speech and Language Processing. An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition by Daniel Jurafsky and James Martin, Pearson Prentice Hall, 2nd Edition 2008
|
Contacts
Course organiser | Dr Frank Keller
Tel: (0131 6)50 4407
Email: |
Course secretary | Mr Gregor Hall
Tel: (0131 6)50 5194
Email: |
|
© Copyright 2017 The University of Edinburgh - 6 February 2017 8:09 pm
|