Undergraduate Course: Algorithms and Data Structures (INFR10052)
Course Outline
School | School of Informatics |
College | College of Science and Engineering |
Credit level (Normal year taken) | SCQF Level 10 (Year 3 Undergraduate) |
Availability | Available to all students |
SCQF Credits | 10 |
ECTS Credits | 5 |
Summary | The course aims to provide general techniques for the design of efficient algorithms and, in parallel, develop appropriate mathematical tools for analysing their performance. In this, it broadens and deepens the study of algorithms and data structures initiated in INF2. The focus is on algorithms, more than data structures. Along the way, problem solving skills are exercised and developed. |
Course description |
Introductory concepts
Review of CS2. Models of computation; time and space complexity; upper and lower bounds, big-O and big-Omega notation; average and worst case analysis.
Divide and conquer
Matrix multiplication: Strassen's algorithm; the discrete Fourier transform (DFT), the fast Fourier transform (FFT). Expressing the runtime of a recursive algorithm as a recurrence relation; solving recurrence relations.
Sorting
Quicksort and its analysis; worst-case, best-case and average-case.
Data structures: Disjoint sets
The ``disjoint sets'' (union-find) abstract data type: specification and implementations as lists and trees. Union-by-rank, path-compression, etc., ``heuristics''. Applications to finding minimum spanning trees.
Dynamic programming
Introduction to the technique; examples: Matrix-chain multiplication, Longest common subsequences.
Graph/Network algorithms
Network flow, Max-flow/min-cut theorem, Ford-Fulkerson algorithm.
Geometric algorithms
Convex hull of a set of points (in 2-d).
Relevant QAA Computing Curriculum Sections: Data Structures and Algorithms
|
Entry Requirements (not applicable to Visiting Students)
Pre-requisites |
Students MUST have passed:
Informatics 2B - Algorithms, Data Structures, Learning (INFR08009) AND
Probability with Applications (MATH08067) AND
Discrete Mathematics and Mathematical Reasoning (INFR08023)
|
Co-requisites | |
Prohibited Combinations | |
Other requirements | This course is open to all Informatics students including those on joint degrees. For external students where this course is not listed in your DPT, please seek special permission from the Course organiser (lecturer).
Joint honours students (or Maths students) who took different second-year Maths courses should get permission of the Course organiser (lecturer).
Students who did not take Informatics 2B - Algorithms and Data Structures, Learning should get special permission from the Course organiser (lecturer).
This course has the following mathematics prerequisites:
1 - Calculus: limits, sums, integration, differentiation, recurrence relations, the Master theorem.
2 - Graph theory: graphs, digraphs, components, trees, weighted graphs, DFS, BFS.
3 - Probability: random variables, expectation, variance, Markov's inequality, Chebychev's inequality
4 - Linear algebra: vectors, matrices, matrix multiplication, scalar products.
5 - Complex numbers: the imaginary unit i, addition and multiplication in C, exponentiation.
6 - Generalities: induction, O-notation, proof by contradiction, confidence in proving theorems. |
Information for Visiting Students
Pre-requisites | Visiting students are required to have comparable background to that
assumed by the course prerequisites listed in the Degree Regulations &
Programmes of Study. If in doubt, consult the Course organiser (lecturer). |
High Demand Course? |
Yes |
Course Delivery Information
|
Academic year 2017/18, Available to all students (SV1)
|
Quota: None |
Course Start |
Semester 2 |
Timetable |
Timetable |
Learning and Teaching activities (Further Info) |
Total Hours:
100
(
Lecture Hours 20,
Seminar/Tutorial Hours 8,
Summative Assessment Hours 2,
Programme Level Learning and Teaching Hours 2,
Directed Learning and Independent Learning Hours
68 )
|
Assessment (Further Info) |
Written Exam
75 %,
Coursework
25 %,
Practical Exam
0 %
|
Additional Information (Assessment) |
In addition to the written exam there is one piece of assessed coursework, involving a mixture of theoretical work and programming. This should take about 15 hours.
There will also be one formative-assessment earlier in semester to allow you to submit work and obtain feedback on your submission; that earlier piece of work will not contribute to your overall grade.
If delivered in semester 1, this course will have an option for semester 1 only visiting undergraduate students, providing assessment prior to the end of the calendar year. |
Feedback |
Not entered |
Exam Information |
Exam Diet |
Paper Name |
Hours & Minutes |
|
Main Exam Diet S2 (April/May) | | 2:00 | | Resit Exam Diet (August) | | 2:00 | |
Learning Outcomes
On completion of this course, the student will be able to:
- Should be able to describe, and implement, the major algorithms for well known combinatorial problems such as Sorting, Matrix Multiplication, Minimum Spanning Trees, and other problems listed in the syllabus.
- Should be able to demonstrate familiarity with algorithmic strategies such as Divide-and-Conquer, the Greedy strategy and Dynamic Programming; and should be able to test these strategies on new problems and identify whether or not they are likely to be useful for those problems.
- Should be able to construct clear and rigorous arguments to prove correctness/running-time bounds of algorithms, and should be able to present these arguments in writing.
- Should be able to explain the importance of the data structures used in a particular implementation of an algorithm, and how the data structure that is used can affect the running time.
- Should be able to construct simple lower bound arguments for algorithmic problems, and to understand the relationship between upper and lower bounds. Also should be able to perform simple average-case analyses of the running-time of an algorithm, as well as worst-case analyses.
|
Reading List
Introduction to Algorithms (3rd Edition), Cormen, Leiserson, Rivest, Stein: . MIT Press, 2002. (Course text) |
Contacts
Course organiser | Dr Richard Mayr
Tel: (0131 6)50 5130
Email: |
Course secretary | Mrs Victoria Swann
Tel: (0131 6)51 7607
Email: |
|
© Copyright 2017 The University of Edinburgh - 6 February 2017 8:08 pm
|