Undergraduate Course: Biophysical Chemistry Level 10 (CHEM10014)
Course Outline
School | School of Chemistry |
College | College of Science and Engineering |
Credit level (Normal year taken) | SCQF Level 10 (Year 4 Undergraduate) |
Availability | Available to all students |
SCQF Credits | 20 |
ECTS Credits | 10 |
Summary | This is a course of lectures, tutorials and workshops that focuses on the interaction between key biological macromolecules and a wide range of fundamental physical phenomena. The course will describe the means by which these potentially highly informative interactions can be studied, and the data collected and processed. The subsequent exploitation of this data to infer key information concerning the three-dimensional structures, composition, dynamics, spatiotemporal distributions and mutual interactions of biological polymers such as proteins and nucleic acids will be outlined. The benefits to be gained from combined use of orthogonal but complementary techniques in an integrated fashion will be emphasized. The course will also teach how knowledge of the physical properties of biological polymers can be used to predict the way in which they fold, adopt quasi-stable tertiary structures and form complexes with other molecules.
Either the Level 10 or Level 11 version of this course version of this course (as specified in the degree programme tables) is a compulsory requirement for Year 4/5 students on degrees in Medicinal and Biological Chemistry, but can be taken by Year 4/5 students on any Chemistry degree programme.
|
Course description |
The course will emphasise the physical basis of each technique and how this relates to its limitations leading to an appreciation of why several experimental and computational techniques, applied in combination, provide the most robust information.
The course consists of a series of modules on the following topics: hydrodynamics i.e. the inference of molecular size, shape and association properties based on the movements of molecules with or in relation to aqueous solvent; the application of visible and ultra-violet light to studies of native biomolecules or biomolecules conjugated with chromophores or fluorophores (biophotonics); nuclear magnetic resonance (NMR) spectroscopy and its applications to structural and dynamic studies of proteins and protein complexes; X-ray crystallography and high-resolution structure determination of macromolecules; electron microscopy applied to biomacromolecules and composite biological structures; and the use of in silico techniques such as molecular dynamics and simulated annealing to predict the structure and behaviour of proteins based on an understanding of their physical properties.
|
Information for Visiting Students
Pre-requisites | None |
High Demand Course? |
Yes |
Course Delivery Information
|
Academic year 2017/18, Available to all students (SV1)
|
Quota: None |
Course Start |
Semester 2 |
Timetable |
Timetable |
Learning and Teaching activities (Further Info) |
Total Hours:
200
(
Lecture Hours 30,
Seminar/Tutorial Hours 11,
Summative Assessment Hours 2.5,
Revision Session Hours 7,
Programme Level Learning and Teaching Hours 4,
Directed Learning and Independent Learning Hours
146 )
|
Assessment (Further Info) |
Written Exam
100 %,
Coursework
0 %,
Practical Exam
0 %
|
Additional Information (Assessment) |
One degree exam of 2.5 hours.
|
Feedback |
Not entered |
Exam Information |
Exam Diet |
Paper Name |
Hours & Minutes |
|
Main Exam Diet S2 (April/May) | | 2:30 | |
Learning Outcomes
On completion of this course, the student will be able to:
- Demonstrate knowledge and understanding of the fundamental principles underlying the interplay between various physical phenomena and the physical properties of biomolecules.
- Apply this knowledge and understanding to achieve an appreciation of how the information needed to determine macromolecular structures and properties is acquired, processed, synthesised and assembled.
- Review the theory and practices of a range of biophysical techniques and demonstrate an ability to assess the robustness of the hypothetical models and mechanisms that are inferred from the data they generate.
- Understand the benefits as well as the theoretical and practical limitations of widely used software for simulating protein folding and protein-ligand interactions, and communicate the outcomes effectively.
- In workshops and small-group work collaborate with peers in self-learning exercises and share findings on protein folding predictions and the orthogonality of biophysical methods with the rest of the class.
|
Additional Information
Graduate Attributes and Skills |
Not entered |
Additional Class Delivery Information |
27 hours lectures + 6 hours tutorials + two three-hour workshops, at times arranged. |
Keywords | BPC(L10) |
Contacts
Course organiser | Prof Paul Barlow
Tel: (0131 6)50 4727
Email: |
Course secretary | Ms Anne Brown
Tel: (0131 6)50 4754
Email: |
|
© Copyright 2017 The University of Edinburgh - 6 February 2017 6:34 pm
|