THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2015/2016

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
DRPS : Course Catalogue : School of Engineering : School (School of Engineering)

Undergraduate Course: Engineering Mathematics 2A (SCEE08009)

Course Outline
SchoolSchool of Engineering CollegeCollege of Science and Engineering
Credit level (Normal year taken)SCQF Level 8 (Year 2 Undergraduate) AvailabilityAvailable to all students
SCQF Credits10 ECTS Credits5
SummaryOrdinary differential equations, transforms and Fourier series with applications to engineering. Linear differential equations, homogeneous and non-homogeneous equations, particular solutions for standard forcings; Laplace transforms and applications; standard Fourier series, half range sine and cosine series, complex form; convergence of Fourier series, differentiation and integration of Fourier series. Introduction to Partial Differential Equations.
Course description Differential Equations:
- Linear Differential Equations [1 lecture]
- Linear constant coefficient Differential Equations [3 lectures]
- Second order linear constant coefficient differential equations, forcing and damping [2 lectures]

Laplace Transforms:
- Definition, simple transforms, properties, inverse and shift theorem [3 lectures]
- Solution of ODEs [3 lectures]

Fourier Series:
- Fourier series, coefficients, even/odd functions, linearity, convergence [2 lectures]
- Full range, half-range [2 lectures]
- Integration and differentiation of Fourier series [1 lecture]

Partial Differential Equations:
- Wave equation, Heat or diffusion equation, Laplace equation [1 lecture]
- Solution of wave equation, D'alembert solution, separated solution [2 lectures]

Entry Requirements (not applicable to Visiting Students)
Pre-requisites It is RECOMMENDED that students have passed Mathematics for Science and Engineering 1a (MATH08060) AND Mathematics for Science and Engineering 1b (MATH08061)
Co-requisites
Prohibited Combinations Other requirements None
Additional Costs Students are expected to own a copy of :

1. Modern Engineering Mathematics by Glyn James, Prentice Hall,
ISBN 978-0-273-73413-X

2. Advanced Modern Engineering Mathematics by Glyn James,
Prentice Hall, ISBN 978-0-273-71923-6
Information for Visiting Students
Pre-requisitesMathematics units passed equivalent to Mathematics for Science and Engineering 1a and Mathematics for Science and Engineering 1b, or Advanced Higher Mathematics (A or B grade) or Mathematics and Further mathematics A-Level passes (A or B grade).
High Demand Course? Yes
Course Delivery Information
Academic year 2015/16, Available to all students (SV1) Quota:  None
Course Start Semester 1
Timetable Timetable
Learning and Teaching activities (Further Info) Total Hours: 100 ( Lecture Hours 20, Seminar/Tutorial Hours 5, Formative Assessment Hours 2, Summative Assessment Hours 10, Programme Level Learning and Teaching Hours 2, Directed Learning and Independent Learning Hours 61 )
Assessment (Further Info) Written Exam 80 %, Coursework 20 %, Practical Exam 0 %
Additional Information (Assessment) Written Exam 80%:
Coursework 20%:

Students must pass both the Exam and the Coursework. The exam is made up of five 20 mark compulsory questions. The coursework comprises 5 pieces of work of which a minimum of 4 must be submitted.
Feedback Not entered
Exam Information
Exam Diet Paper Name Hours & Minutes
Main Exam Diet S1 (December)Engineering Mathematics 2A1:30
Resit Exam Diet (August)Engineering Mathematics 2A1:30
Learning Outcomes
On completion of this course, the student will be able to:
  1. An ability to solve important classes of first- and second- order differential equation problems.
  2. An ability to interpret solutions and draw conclusions from them.
  3. A competence in using Laplace transform tables, including the shift theorems, with ability to solve initial value problems for ODEs.
  4. Familiarity with methods for treating coupled sets of ODEs.
  5. An ability to determine Fourier series for some basic periodic functions, with some appreciation of how a series converges to a periodic waveform. A basic understanding of the complex Fourier series. An Introduction to Partial Differential Equations.
Reading List
Students are expected to own a copy of :
1. Modern Engineering Mathematics by Glyn James, Prentice Hall,
ISBN 978-0-273-73413-X
2. Advanced Modern Engineering Mathematics by Glyn James,
Prentice Hall, ISBN 978-0-273-71923-6
Additional Information
Graduate Attributes and Skills Not entered
KeywordsOrdinary differential equations,Partial differential equations,Laplace transforms,Fourier series
Contacts
Course organiserProf David Ingram
Tel: (0131 6)51 9022
Email:
Course secretaryMiss Lucy Davie
Tel: (0131 6)51 7073
Email:
Navigation
Help & Information
Home
Introduction
Glossary
Search DPTs and Courses
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Combined Course Timetable
Prospectuses
Important Information
 
© Copyright 2015 The University of Edinburgh - 21 October 2015 1:01 pm