Postgraduate Course: Lab-on-Chip Technologies (PGEE11042)
Course Outline
School | School of Engineering |
College | College of Science and Engineering |
Course type | Standard |
Availability | Not available to visiting students |
Credit level (Normal year taken) | SCQF Level 11 (Postgraduate) |
Credits | 10 |
Home subject area | Postgrad (School of Engineering) |
Other subject area | None |
Course website |
None |
Taught in Gaelic? | No |
Course description | This module will outline the basic concept of devices that integrate one or several laboratory functions on a single chip, and how they can offer advantages specific to their application. Such advantages include: low fluid volumes that lead to lower reagent costs and smaller biological samples for diagnostic purposes; faster analysis and response times that also provide better process control; the ability through parallel processing to provide high-throughput screening; and inherent low fabrication costs that make disposable chips economically viable. The influence of the scaling-down of dimensions on the physico-chemical behaviour of fluids and chemical reactions will also be covered. Current applications of lab-on-chip devices will be given. |
Entry Requirements (not applicable to Visiting Students)
Pre-requisites |
|
Co-requisites | |
Prohibited Combinations | |
Other requirements | None |
Additional Costs | None |
Course Delivery Information
|
Delivery period: 2014/15 Semester 2, Not available to visiting students (SS1)
|
Learn enabled: Yes |
Quota: None |
|
Web Timetable |
Web Timetable |
Course Start Date |
12/01/2015 |
Breakdown of Learning and Teaching activities (Further Info) |
Total Hours:
100
(
Lecture Hours 11,
Seminar/Tutorial Hours 7,
Programme Level Learning and Teaching Hours 2,
Directed Learning and Independent Learning Hours
80 )
|
Additional Notes |
|
Breakdown of Assessment Methods (Further Info) |
Written Exam
75 %,
Coursework
25 %,
Practical Exam
0 %
|
Exam Information |
Exam Diet |
Paper Name |
Hours & Minutes |
|
Main Exam Diet S2 (April/May) | | 2:00 | |
Summary of Intended Learning Outcomes
An appreciation of the design and development of microfluidic devices that can perform many, if not all, of the functions typically associated with full-scale automated biochemical analysis devices containing pumps, mixers, heat elements, read-out electronics, etc. An understanding of how to avoid the requirement of external power sources or instrumentation by incorporating into these devices the inherent properties of the fluid and its microenvironment (capillary force, evaporation, wicking, heat transfer, diffusion, etc.) for fluid movement, mixing, heating, cooling, and catalyzing chemical reactions. An understanding of how to apply non-dimensional parameters (e.g., Knudsen, Peclet, Reynolds number) to practical flow problems. |
Assessment Information
Exam and essay. |
Special Arrangements
None |
Additional Information
Academic description |
Not entered |
Syllabus |
Not entered |
Transferable skills |
Not entered |
Reading list |
Not entered |
Study Abroad |
Not entered |
Study Pattern |
Not entered |
Keywords | Biochemical assays, dielectrophoresis, electrophoresis, electroosmosis, high-throughput screening, M |
Contacts
Course organiser | Prof Anthony Walton
Tel: (0131 6)50 5620
Email: |
Course secretary | Mrs Sharon Potter
Tel: (0131 6)51 7079
Email: |
|
© Copyright 2014 The University of Edinburgh - 13 February 2014 1:56 pm
|