Postgraduate Course: Decision Making in Robots and Autonomous Agents (INFR11090)
Course Outline
School | School of Informatics |
College | College of Science and Engineering |
Course type | Standard |
Availability | Available to all students |
Credit level (Normal year taken) | SCQF Level 11 (Postgraduate) |
Credits | 10 |
Home subject area | Informatics |
Other subject area | None |
Course website |
http://www.inf.ed.ac.uk/teaching/courses/dmr/ |
Taught in Gaelic? | No |
Course description | This course is intended as a specialized course on models and techniques for decision making in autonomous agents, such as intelligent robots, that must function in rich interactive settings involving environments with other agents and people.
This course will cover decision theoretic algorithms, interactive decision making including game theoretic techniques, learning in games and social settings, as well as selected topics involving decentralized systems. We will also look at aspects of human decision making, both to ask what people actually do and to consider what agents must do in light of this.
Issues of intelligent and fluid interaction by autonomous robots/agents, operating in environments including other strategic agents (either other autonomous agents or people), are becoming increasingly more important - with the advent of systems that routinely embody rich and sophisticated multi-modal interfaces, making it possible for us to now consider issues of interactive behaviour. At the same time but from a seemingly opposite perspective, 'market design' approaches are becoming increasingly more
suitable to the needs of collections of individually simple robots and agents (and people) that must work together on sophisticated large scale tasks.
The content of this course has connections to other courses within our existing curriculum, such as Reinforcement Learning and Algorithmic Game Theory. A noteworthy difference is that this course will focus more heavily on issues of modelling - how tasks associated with robotics and autonomous agents could/should be expressed and analysed using the formal language of these models, and also have more coverage of learning and potential connections to mechanisms of (boundedly rational) human decision making. This course will be self contained, discussing salient algorithmic techniques associated with some of the major models being considered. However, we expect this knowledge to be complemented by the more detailed discussion of techniques in the RL and AGTA courses. Similarly, students will benefit from prior exposure to robotics at the level of the R:SS course (or some equivalent exposure to autonomous agent design), which provides the perspective necessary to fully appreciate the concerns of this course. |
Entry Requirements (not applicable to Visiting Students)
Pre-requisites |
|
Co-requisites | |
Prohibited Combinations | |
Other requirements | Prior exposure to mathematical models; Multivariate Calculus, Probability & Stochastic Processes |
Additional Costs | None |
Information for Visiting Students
Pre-requisites | None |
Displayed in Visiting Students Prospectus? | Yes |
Course Delivery Information
|
Delivery period: 2013/14 Semester 2, Available to all students (SV1)
|
Learn enabled: No |
Quota: None |
|
Web Timetable |
Web Timetable |
Course Start Date |
13/01/2014 |
Breakdown of Learning and Teaching activities (Further Info) |
Total Hours:
100
(
Directed Learning and Independent Learning Hours
100 )
|
Additional Notes |
|
Breakdown of Assessment Methods (Further Info) |
Please contact the School directly for a breakdown of Assessment Methods
|
Exam Information |
Exam Diet |
Paper Name |
Hours & Minutes |
|
Main Exam Diet S2 (April/May) | | 2:00 | |
Summary of Intended Learning Outcomes
- formulate practical problems involving interaction (e.g., human-robot interaction) in the language of decision and game theory
- analyze and evaluate conceptual problems with decision models involving multiple agents
- analyze and implement selected learning algorithms that consider incomplete information and partial observability
- demonstrate understanding of key issues related to decision making in humans; identify when, why and how standard models fail to capture real behaviour |
Assessment Information
Written Examination 60
Assessed Assignments 40 |
Special Arrangements
None |
Additional Information
Academic description |
Not entered |
Syllabus |
The DMR course will cover the following major themes:
Introduction
- Problems involving interaction: Strategically rich human-robot interaction; Teams of autonomous agents; Market design
- Survey of existing models of interaction: from psychology, cognitive science and machine learning
Decision Theory:
- The utility maximization framework of decision theory
- Bandit problems, online learning and related models (e.g., matching problems)
- Markov Decision Processes and variants
Interactive Decision Making:
- Tools and techniques of game theoretic models
- Game theoretic models with incomplete information; models such as Interactive POMDP
- Repeated interaction
- Models of bargaining and negotiation (including the incomplete information case)
- Strategic learning in games
Mechanism Design and Related Topics in Decentralized Systems:
- Introduction to mechanism design and social choice
- Learning and mechanism design
- Graphical games, coordination games and social learning models
- Special topics: models of asymmetric information and privacy
Human Decision Making and Behavioural Issues:
- Behavioural aspects of human decision making - how real people think about risk, games, etc.
- Reconciling behavioural findings with formal models |
Transferable skills |
Not entered |
Reading list |
I. Gilboa, Theory of Decision Under Uncertainty, Cambridge University Press, 2009.
H.P. Young, Strategic Learning and its Limits, Oxford University Press, 2004.
N. Nisan, T. Roughgarden, E. Tardos, V.V. Vazirani, Algorithmic Game Theory, Cambridge University press, 2007.
P.W. Glimcher, Foundations of Neuroeconomic Analysis, Oxford University Press, 2011. |
Study Abroad |
Not entered |
Study Pattern |
Lectures: 18
Tutorials: 0
Timetabled Laboratories: 0
Non-timetabled assessed assignments: 25
Private Study/Other: 57 |
Keywords | Not entered |
Contacts
Course organiser | Dr Michael Rovatsos
Tel: (0131 6)51 3263
Email: |
Course secretary | Miss Kate Weston
Tel: (0131 6)50 2701
Email: |
|
© Copyright 2013 The University of Edinburgh - 11 November 2013 4:11 am
|