Postgraduate Course: Quantitative Methods in Fire Safety Engineering (European Masters) (PGEE11070)
Course Outline
School | School of Engineering |
College | College of Science and Engineering |
Course type | Standard |
Availability | Not available to visiting students |
Credit level (Normal year taken) | SCQF Level 11 (Postgraduate) |
Credits | 12 |
Home subject area | Postgrad (School of Engineering) |
Other subject area | None |
Course website |
None |
Taught in Gaelic? | No |
Course description | This course provides the principles of performance-based design of structures for fire safety. It focuses on the use of analytical and numerical tools in the estimation of performance of fire safety systems. Fire investigation and reconstruction (i.e. Forensics) is introduced. Advanced systems are introduced to establish modern approaches to fire safety engineering. A significant portion of this course is dedicated to industrial fire safety. This section will be introduced on the basis of different industrial accidents and the application of fire safety principles to their analysis, to the lessons learned and to alternative design approaches. This course will present the different analytical, empirical models and numerical models used for quantitative performance assessment of fire safety systems. Emphasis is given to the use of numerical tools. A series of laboratories will introduce the student to modern numerical tools and to their application in the design of fire safety systems. This course will familiarize the student with the use of different quantitative methodologies for fire safety calculations. Thus, after this course the student should be able to use computer based fire models, evaluate results from these tools and assess uncertainty related to the output from these tools. The student after this course should be able to apply the tools learned in previous course towards performance-based design, quantitative risk assessment, equivalence analysis and fire reconstruction. |
Entry Requirements (not applicable to Visiting Students)
Pre-requisites |
|
Co-requisites | |
Prohibited Combinations | |
Other requirements | None |
Additional Costs | 0 |
Course Delivery Information
|
Delivery period: 2012/13 Semester 1, Not available to visiting students (SS1)
|
WebCT enabled: Yes |
Quota: None |
Location |
Activity |
Description |
Weeks |
Monday |
Tuesday |
Wednesday |
Thursday |
Friday |
No Classes have been defined for this Course |
First Class |
First class information not currently available |
Exam Information |
Exam Diet |
Paper Name |
Hours:Minutes |
|
|
Main Exam Diet S1 (December) | | 1:30 | | |
Summary of Intended Learning Outcomes
Understanding of the concept of Performance Calculations
- The establishment of project requirements and the concept of equivalent safety.
- Principles of risk analysis.
Familiarity with material selection procedures and fuel load control
- The concept of the design fire
- The use of flammability calculations for the prediction of fire growth
- Separation distances and required heat transfer calculations.
Be able to predict the performance of fire detection systems
- Smoke plume and ceiling jet calculations
- Obscuration and smoke detector performance
- Sprinkler activation (RTI) and performance of water suppression systems.
- Alternative detection and suppression technologies, evaluation of relative performance.
Understand advanced mechanisms for smoke management
- Calculations for smoke control; reservoirs, entrainment, flow through fans, pressure calculations.
Understanding of the requirements for the Reporting of Engineering Calculations
- Minimum requirements for reporting, justification and user manuals.
Be able to apply the above Concepts to cases in Industrial Fire Safety
- Examples of different industrial accidents analysed with performance calculation tools
Be able to apply the above concepts to Fire Investigation and Fire Reconstruction (Forensics)
- The use of fire dynamic calculation to support fire investigation. Reconstruction of the timeline.
- Case studies |
Assessment Information
Coursework: 30%
Degree Exam: 70% |
Special Arrangements
None |
Additional Information
Academic description |
Not entered |
Syllabus |
Not entered |
Transferable skills |
Not entered |
Reading list |
Not entered |
Study Abroad |
Not entered |
Study Pattern |
Not entered |
Keywords | Fire Safety Engineering |
Contacts
Course organiser | Dr Stephen Welch
Tel: (0131 6)50 5734
Email: |
Course secretary | Mrs Laura Smith
Tel: (0131 6)50 5690
Email: |
|
© Copyright 2012 The University of Edinburgh - 6 March 2012 6:23 am
|