THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2007/2008
- ARCHIVE for reference only
THIS PAGE IS OUT OF DATE

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
Home : College of Science and Engineering : School of Physics (Schedule Q) : Undergraduate (School of Physics)

Advanced Statistical Physics (U01426)

? Credit Points : 10  ? SCQF Level : 11  ? Acronym : PHY-5-AdvStatPh

In this course we will discuss equilibrium phase transition, of the first and second order, by using the Ising and the Gaussian models as examples. We will first review some basic concepts in statistical physics, then study critical phenomena. Phase transitions will be analysed first via mean field theory, then via the renormalisation group (RG), in real space. We will conclude with some discussion of the dynamics of the approach to equilibrium.

Entry Requirements

? Pre-requisites : At least 80 credit points accrued in courses of SCQF Level 9 or 10 drawn from Schedule Q. Prior/concurrent attendance at Statistical Physics (PHY-4-StatPh) is desirable.

Variants

? This course has variants for part year visiting students, as follows

Subject Areas

Delivery Information

? Normal year taken : 5th year

? Delivery Period : Semester 1 (Blocks 1-2)

? Contact Teaching Time : 2 hour(s) per week for 11 weeks

First Class Information

Date Start End Room Area Additional Information
18/09/2007 11:00 12:00 Lecture Room 3218, JCMB KB

All of the following classes

Type Day Start End Area
Lecture Tuesday 11:10 12:00 KB
Lecture Friday 11:10 12:00 KB

Summary of Intended Learning Outcomes

Upon successful completion of this course it is intended that a student will be able to:
1)Express expectation values in a canonical ensemble.
2)Discuss the phenomenology of first- and second-order phase transitions with particular reference to the Ising model and liquid-gas transition.
3)Understand what a critical exponent is and be able to derive scaling relations
4)Exactly solve the Ising and the Gaussian model in 1 spatial dimension
5)Calculate correlations in the Ising model
6)Understand what mean field theory is, how it can be used to analyse a phase transition
7)Discuss the validity of mean-field theory in terms of upper critical dimension and give an heuristic argument to suggest dc=4
8)Apply the RG transformation in 1 dimension (decimation) to an Ising-like system.
9)State the RG transformation and discuss the nature of its fixed points for a symmetry-breaking phase transformation
10)Study the fixed points of an RG flow and understand their physical meaning
11)Understand what the Langevin and the Fokker-Planck equations are and how they can be related.
12)Be able to compute expectations of random variables with the Langevin equation, and to solve the Langevin and Fokker-Planck equations in simple cases (1 dimension)

Assessment Information

Degree Examination, 100%

Exam times

Diet Diet Month Paper Code Paper Name Length
1ST May 1 - 2 hour(s)

Contact and Further Information

The Course Secretary should be the first point of contact for all enquiries.

Course Secretary

Mrs Linda Grieve
Tel : (0131 6)50 5254
Email : linda.grieve@ed.ac.uk

Course Organiser

Dr Alexander Morozov
Tel : (0131 6)50 5289
Email : alexander.morozov@ed.ac.uk

School Website : http://www.ph.ed.ac.uk/

College Website : http://www.scieng.ed.ac.uk/

Navigation
Help & Information
Home
Introduction
Glossary
Search
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Prospectuses
Important Information
Timetab
 
copyright 2007 The University of Edinburgh