THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2007/2008
- ARCHIVE for reference only
THIS PAGE IS OUT OF DATE

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
Home : College of Science and Engineering : School of Physics (Schedule Q) : Undergraduate (School of Physics)

Quantum Physics (U01422)

? Credit Points : 10  ? SCQF Level : 10  ? Acronym : PHY-4-QuantPh

In this course we study techniques used in the practical applications of quantum mechanics. We begin with a review of the basic ideas of quantum mechanics, including various representations, and fundamental symmetries including bosons and fermions. We then develop time-independent perturbation theory and consider its extension to degenerate systems. The variational principle is introduced, and extended to find self-consistent states of identical particles and the Hellmann-Feynman theorem relating classical and quantum forces. We then study time-dependent perturbation theory, obtain Fermi's Golden Rule, and look at radiative transitions and selection rules. We will also examine two-particle states, Bell's theorem and entanglement. Subsequently we study scattering in the Born Approximation.

Entry Requirements

? Pre-requisites : At least 40 credit points accrued in courses of SCQF Level 9 or 10 drawn from Schedule Q, including Physical Mathematics (PHY-3-PhMath) or equivalent.

Variants

? This course has variants for part year visiting students, as follows

Subject Areas

Delivery Information

? Normal year taken : 4th year

? Delivery Period : Semester 1 (Blocks 1-2)

? Contact Teaching Time : 2 hour(s) per week for 11 weeks

First Class Information

Date Start End Room Area Additional Information
20/09/2007 10:00 11:00 Lecture Theatre G10, Darwin Building + Outhouses KB

All of the following classes

Type Day Start End Area
Lecture Monday 10:00 10:50 KB
Lecture Thursday 10:00 10:50 KB

? Additional Class Information : Workshop/tutorial sessions, Wednesdays 9:00-11:00, JCMB 3218 and 3317 from Week 2.

Summary of Intended Learning Outcomes

Upon successful completion of this course it is intended that a student will be able to:
1)state and explain the basic postulates of quantum mechanics
2)understand the ideas of compatible and incompatible observables and explain the concept of good quantum numbers
3)define and apply matrix representations of spin operators
4)derive the effects of a time-independent perturbation on the energy eigenvalues and eigenfunctions of a quantum system and apply the results to a range of physical problems
5)discuss the fine structure of Hydrogen
6)explain the Rayleigh-Ritz variational method and demonstrate its use for bounding the energy of various systems
7)understand the concept of a transition probability and apply perturbation theory to time-dependent problems
8)discuss the interaction of radiation with quantum systems and explain the concept of selection rules
9) describe two particle interactions of bosons and fermions, explain the Born approximation and bound states for simple central potentials.
10) understand the Einstein-Podulsky-Rosen "paradox" and the concept of non-locality.

Assessment Information

Degree Examination, 100%

Exam times

Diet Diet Month Paper Code Paper Name Length
1ST May 1 - 2 hour(s)

Contact and Further Information

The Course Secretary should be the first point of contact for all enquiries.

Course Secretary

Mrs Linda Grieve
Tel : (0131 6)50 5254
Email : linda.grieve@ed.ac.uk

Course Organiser

Prof Graeme Ackland
Tel : (0131 6)50 5299
Email : gjackland@ed.ac.uk

Course Website : http://www.ph.ed.ac.uk/~gja/qp4/

School Website : http://www.ph.ed.ac.uk/

College Website : http://www.scieng.ed.ac.uk/

Navigation
Help & Information
Home
Introduction
Glossary
Search
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Prospectuses
Important Information
Timetab
 
copyright 2007 The University of Edinburgh