THE UNIVERSITY of EDINBURGH

DEGREE REGULATIONS & PROGRAMMES OF STUDY 2007/2008
- ARCHIVE for reference only
THIS PAGE IS OUT OF DATE

University Homepage
DRPS Homepage
DRPS Search
DRPS Contact
Home : College of Science and Engineering : School of Physics (Schedule Q) : Undergraduate (School of Physics)

Statistical Mechanics (U01357)

? Credit Points : 10  ? SCQF Level : 9  ? Acronym : PHY-3-StatMech

This course provides an introduction to the microscopic formulation of thermal physics, generally known as statistical mechanics. We explore the general principles, from which emerge an understanding of the microscopic significance of entropy and temperature. We develop the machinery needed to form a practical tool linking microscopic models of many-particle systems with measurable quantities. We consider a range of applications to simple models of crystalline solids, classical gases, quantum gases and blackbody radiation.

Entry Requirements

? Pre-requisites : Physics 2B: Waves, Quantum Physics and Materials (PHY-2-B); Foundations of Mathematical Physics (PHY-2-FoMP) or Principles of Mathematical Physics (PHY-2-PoMP).

Subject Areas

Delivery Information

? Normal year taken : 3rd year

? Delivery Period : Semester 2 (Blocks 3-4)

? Contact Teaching Time : 3 hour(s) per week for 11 weeks

First Class Information

Date Start End Room Area Additional Information
08/01/2008 09:00 10:00 Lecture Theatre B, JCMB KB

All of the following classes

Type Day Start End Area
Lecture Tuesday 09:00 09:50 KB
Lecture Friday 09:00 09:50 KB

? Additional Class Information : Workshop/tutorial sessions, as arranged.

Summary of Intended Learning Outcomes

On completion of this course a student should be able to:
1)define and discuss the concepts of microstate and macrostate of a model system
2)define and discuss the concepts and roles of entropy and free energy from the view point of statistical mechanics
3)define and discuss the Boltdsmann distribution and the role of the partition function
4)apply the machinery of statistical mechanics to the calculation of macroscopic properties resulting from microscopic models of magnetic and crystalline systems
5)discuss the concept and role of indistinguishability in the theory of gases; know the results expected from classical considerations and when these should be recovered
6)define the Fermi-Dirac and Bose-Einstein distributions; state where they are applicable; understand how they differ and show when they reduce to the Boltsman
distribution
7)apply the Fermi-Dirac distribution to the calculation of thermal properties of elctrons in metals
8)apply the Bose-Einstein distribution to the calculation of properties of black body radiation

Assessment Information

Coursework, 10%
Degree Examination, 90%

Exam times

Diet Diet Month Paper Code Paper Name Length
1ST May 1 - 2 hour(s)
2ND August 1 - 2 hour(s)

Contact and Further Information

The Course Secretary should be the first point of contact for all enquiries.

Course Secretary

Mrs Linda Grieve
Tel : (0131 6)50 5254
Email : linda.grieve@ed.ac.uk

Course Organiser

Dr Philippe Monthoux
Tel : (0131 6)51 7231
Email : pmonthou@ph.ed.ac.uk

School Website : http://www.ph.ed.ac.uk/

College Website : http://www.scieng.ed.ac.uk/

Navigation
Help & Information
Home
Introduction
Glossary
Search
Regulations
Regulations
Degree Programmes
Introduction
Browse DPTs
Courses
Introduction
Humanities and Social Science
Science and Engineering
Medicine and Veterinary Medicine
Other Information
Prospectuses
Important Information
Timetab
 
copyright 2007 The University of Edinburgh